Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts

Abstract

In the present study, we examined the underlying mechanism, which causes the constitutive tyrosine phosphorylation of signal transducer and activator of transcription 5 (STAT5) in acute myeloid leukemia (AML) blasts. Constitutive STAT5 phosphorylation was observed in 18 of 26 (69%) patients with AML. The constitutive STAT5 phosphorylation was caused by different mechanisms. In the majority of the investigated cases (71% (12 of 17)) constitutive STAT5 phosphorylation was associated with autophosphorylation of the type III receptor tyrosine kinase Flt3. In 47% (eight of 17) of these cases autophosphorylation of Flt3 coincided with tandem duplications of the Flt3 gene, resulting in constitutive phosphorylation of the receptor, while 24% (four of 17) of the cases demonstrated STAT5 phosphorylation and Flt3 autophosphorylation without mutations. In addition, a subset of AML cases (29% (five of 17)) had no autophosphorylation of the Flt3 receptor, but demonstrated constitutive STAT5 phosphorylation, which was partly due to autocrine growth factor production. All AML cases with high STAT5 and Flt3 phosphorylation demonstrated, in general, a lower percentage of spontaneous apoptosis, compared to AML blasts with no spontaneous STAT5 phosphorylation. Addition of the receptor tyrosine III kinase inhibitor AG1296 strongly inhibited STAT5 phosphorylation and enhanced the percentage of apoptotic cells without modulating the Bcl-xl protein levels. These data indicate that in the majority of AML cases the constitutive STAT5 phosphorylation is caused by Flt3 phosphorylation mostly due to mutations in the receptors and associated with a low degree of spontaneous apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vellenga E, Griffin JD . The biology of acute myeloblastic leukemia Semin Oncol 1987 14: 365–371

    CAS  PubMed  Google Scholar 

  2. Look AT . Oncogenic transcription factors in the human acute leukemias Science 1997 278: 1059–1064

    Article  CAS  Google Scholar 

  3. Rabbits TH . Translocations, master genes, and differences between the origins of acute and chronic leukemias Cell 1991 67: 641–644

    Article  Google Scholar 

  4. Rabbits TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    Article  Google Scholar 

  5. Solomon E, Borrow J, Goddard AD . Chromosome aberrations and cancer Science 1991 254: 1153–1160

    Article  CAS  Google Scholar 

  6. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis Blood 2000 95: 19–29

    CAS  Google Scholar 

  7. Mui AL-F, Wakao H, O'Farrell A-M, Harada N, Miyajima A . Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs EMBO J 1995 14: 1166–1175

    Article  CAS  Google Scholar 

  8. Sakamaki K, Miyajima I, Kitamura T, Miyajima A . Critical cytoplasmic domains of the common β subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation EMBO J 1992 11: 3541–3549

    Article  CAS  Google Scholar 

  9. Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN . JAK2 associates with the beta c chain of the receptor for granulocyte–macrophage colony-stimulating factor, and its activation requires the membrane proximal region Mol Cell Biol 1994 14: 4335–4341

    Article  CAS  Google Scholar 

  10. Darnell JE Jr . STATs and gene regulation Science 1997 277: 1630–1635

    Article  Google Scholar 

  11. Morriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F . Deletion of the carboxy-terminal transactivation domain of MGF-STAT5 results in sustained DNA-binding and a dominant negative phenotype Mol Cell Biol 1996 16: 5691–5700

    Article  Google Scholar 

  12. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, Miyajima A, Yoshimura A . CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation Blood 1997 89: 3148–3154

    CAS  PubMed  Google Scholar 

  13. Yoshimura A, Ichihara M, Kinjyo I, Moriyama M, Copeland NG, Gilbert DJ, Jenkins NA, Hara T, Miyajima A . Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway EMBO J 1996 15: 1055–1063

    Article  CAS  Google Scholar 

  14. Socolovsky M, Fallon AEJ, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red-cell progenitors in Stat5a−/−5b−/−mice: a direct role for Stat5 in Bcl-X(L) induction Cell 1999 98: 181–191

    Article  CAS  Google Scholar 

  15. De Groot RP, Raaijmakers JA, Lammers JW, Koenderman L . STAT5-dependent cyclinD1 and Bcl-xL expression in Bcr-abl-transformed cells Mol Cell Biol Res Commun 2000 3: 299–305

    Article  CAS  Google Scholar 

  16. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326

    Article  CAS  Google Scholar 

  17. Xia Z, Baer MR, Block AW, Baumann H, Wetzler M . Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts Cancer Res 1998 58: 3173–3180

    CAS  PubMed  Google Scholar 

  18. Gouilleux-Gruart GV, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J, Weber-Nordt R, Dusanter-Fourt I, Dreyfus F, Groner B, Prin L . STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients Blood 1996 87: 1692–1697

    CAS  PubMed  Google Scholar 

  19. Schuringa J-J, Wierenga ATJ, Kruijer W, Vellenga E . Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6 Blood 2000 95: 3765–3770

    CAS  PubMed  Google Scholar 

  20. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells Blood 2000 95: 2118–2125

    CAS  Google Scholar 

  21. Ho JMY, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling Blood 1999 93: 4354–4364

    CAS  Google Scholar 

  22. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D . Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family Oncogene 1991 6: 1641–1650

    CAS  PubMed  Google Scholar 

  23. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y, Birg F, Birnbaum D . Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells Blood 1993 82: 1110–1119

    CAS  PubMed  Google Scholar 

  24. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR . A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations Cell 1991 65: 1143–1152

    Article  CAS  Google Scholar 

  25. Cadena DL, Gill GN . Receptor tyrosine kinases FASEB J 1992 6: 2332–2337

    Article  CAS  Google Scholar 

  26. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR . Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors Immunity 1995 3: 147–161

    Article  CAS  Google Scholar 

  27. Piacibello W, Fubini L, Sanavio F, Brizzi MF, Severino A, Garetto L, Stacchini A, Pegoraro L, Aglietta M . Effects of human FLT3 ligand on myeloid leukemia cell growth: heterogeneity in response and synergy with other hematopoietic growth factors Blood 1995 86: 4105–4114

    CAS  PubMed  Google Scholar 

  28. Dosil M, Wang S, Lemischka IR . Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells Mol Cell Biol 1993 13: 6572–6585

    Article  CAS  Google Scholar 

  29. Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, Leonard WJ, Broxmeyer HE . Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling J Exp Med 2000 192: 719–728

    Article  CAS  Google Scholar 

  30. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on large series of patients and cell lines Leukemia 1997 11: 1605–1609

    Article  CAS  Google Scholar 

  31. Rombouts WJC, Blokland I, Löwenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene Leukemia 2000 14: 675–683

    Article  CAS  Google Scholar 

  32. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T . Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product Leukemia 1998 12: 1333–1337

    Article  CAS  Google Scholar 

  33. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T . Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines Oncogene 2000 19: 624–631

    Article  CAS  Google Scholar 

  34. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C, Grüning W, Kratz-Albers K, Serve S, Steur C, Büchner T, Kienast J, Kanakura Y, Berdel WE, Serve H . Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways Blood 2000 96: 3907–3914

    CAS  Google Scholar 

  35. French–American–British (FAB) Cooperative Group . Proposed revised criteria for the classification of acute myeloid leukemia Ann Intern Med 1985 103: 620–629

    Article  Google Scholar 

  36. Kubo K, Naoe T, Kiyoi H, Fukutani H, Kato Y, Oguri T, Yamamori S, Akatsuka Y, Kodera Y, Ohno R . Clonal analysis of multiple point mutations in the N-ras gene in patients with acute myeloid leukemia Jpn J Cancer Res 1993 84: 379–387

    Article  CAS  Google Scholar 

  37. Young DC, Demetri GD, Ernst TJ, Cannistra SA, Griffin JD . In vitro expression of colony-stimulating factor genes by human acute myeloblastic leukemia cells Exp Hematol 1988 16: 378–382

    CAS  PubMed  Google Scholar 

  38. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia F, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM . Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor Nature 1996 15: 645–648

    Article  Google Scholar 

  39. Kovalenko M, Gazit A, Bohmer A, Rorsman C, Ronnstrand L, Heldin CH, Waltenberger J, Bohmer FD, Levitzki A . Selective platelet-derived growth factor receptor kinase blockers reverse cis-transformation Cancer Res 1994 54: 6106–6114

    CAS  PubMed  Google Scholar 

  40. Schwartz S, Heinecke A, Zimmerman M, Creutzig U, Schoch C, Harbott J, Fonatsch C, Loffler H, Buchner T, Ludwig WD, Thiel E . Expression of the c-kit receptor (CD117) is a feature of almost all subtypes of de novo acute myeloblastic leukemia (AML), including cytogenetically good-risk AML, and lacks prognostic significance Leuk Lymphoma 1999 34: 85–94

    Article  CAS  Google Scholar 

  41. Boucheron C, Dumon S, Santos SCR, Moriggl R, Hennighausen L, Gisselbrecht S, Gouilleux F . A single amino acid in the DNA binding regions of STAT5a and STAT5b confers distinct DNA binding specificities J Biol Chem 1998 273: 33936–33941

    Article  CAS  Google Scholar 

  42. Nosaka T, Kawashima T, Misawa K Ikuta K, Mui ALF, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells EMBO J 1999 18: 4754–4765

    Article  CAS  Google Scholar 

  43. Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, Kienast J, Leo R, Schwartz S, Berdel WE, Serve H . Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells Br J Haematol 2000 108: 322–330

    Article  CAS  Google Scholar 

  44. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M,, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies Blood 2001 97: 2434–2439

    Article  CAS  Google Scholar 

  45. Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel AE . The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes J Immunol 2000 165: 1743–1754

    Article  CAS  Google Scholar 

  46. Gesbert F, Griffin JD . Bcr/Abl activates transcription of the Bcl-X gene through STAT5 Blood 2000 96: 2269–2276

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant RUG 99-1944 from the Dutch Cancer Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkenkamp, K., Geugien, M., Lemmink, H. et al. Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 15, 1923–1931 (2001). https://doi.org/10.1038/sj.leu.2402317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402317

Keywords

This article is cited by

Search

Quick links