Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High affinity uptake of glutamate in terminals of corticostriatal axons

Abstract

GLUTAMIC ACID (glu) may be the transmitter of a large proportion of excitatory synapses in the brain1, but glu is also important in cell metabolism, and the apparent lack of biochemical ‘markers’ associated with the role of glu as a synaptic transmitter has until recently hampered the localisation of potential ‘glutamergic’ neurones. High affinity uptake of glu2,3 is, however, highly specific2 and seems to be selectively localised in the excitatory granular cell terminals in the cerebellum4, and in three systems of excitatory nerve endings in the hippocampal formation, as shown by autoradiography5 and quantitative measurements6. In the conditions used in these studies, glial uptake of glu7,8 was found not to be quantitatively important. In the hippocampal systems, iontophoretic studies9 and release experiments10 strongly suggest that glu, and/or aspartic acid (asp), may be the transmitter. It thus seems that high affinity uptake of glu may be useful as a marker for putative glutamergic and/or aspartergic nerve endings. The question of whether the uptake of [3H]glu, as measured in vitro, represents net accumulation or homoexchange11 is not crucial in the present context. The neostriatum (nucleus caudatus–putamen) receives a large excitatory projection from the neocortex12,13. Iontophoretic studies suggest that this could use glu or asp as its transmitter1,14. We here demonstrate that high affinity uptake of glu is selectively reduced in the neostriatum after lesions in the neocortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Curtis, D. R. & Johnston, G. A. R. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  Google Scholar 

  2. Balcar, V. J. & Johnston, G. A. R. J. Neurochem. 19, 2657–2666 (1972).

    Article  CAS  Google Scholar 

  3. Logan, W. J. & Snyder, S. H. Brain Res. 42, 413–431 (1972).

    Article  CAS  Google Scholar 

  4. Young, A. B., Oster-Granite, M. L., Herndon, R. M. & Snyder, S. H. Brain Res. 73, 1–13 (1974).

    Article  CAS  Google Scholar 

  5. Iversen, L. L. & Storm-Mathisen, J. Acta physiol. scand. 96, 22A–23A (1976).

    Google Scholar 

  6. Storm-Mathisen, J. Brain Res. 120, 379–386 (1977).

    Article  CAS  Google Scholar 

  7. Hökfelt, T. & Ljungdahl, Å. in Studies of Neurotransmitters at the Synaptic Level (ed. Costa, E., Iversen, L. L., and Paoletti, R.) Adv. Biochem. Psychopharmac. 6, 1–36 (1972).

    Google Scholar 

  8. Henn, F. A., Goldstein, M. N. & Hamberger, A. Nature, 249, 663–664 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Schwartzkroin, P. A. & Andersen, P. in Properties of Dendrites (ed. Kreutzberg, G. W.) Adv. Neurol. 12, 45–51 (1975).

    Google Scholar 

  10. Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S. & Cotman, C. W. Nature, 260, 538–540 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Levi, G., Bertollini, A., Chen, J. & Raiteri, M. J. Pharmac. exp. Ther. 188, 429–438 (1974).

    CAS  Google Scholar 

  12. Webster, K. E. J. Anat. 95, 532–544 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Buchwald, D. N., Price, D. D., Vernon, L. & Hull, C. D. Expl Neurol. 38, 311–321 (1973).

    Article  CAS  Google Scholar 

  14. Spencer, H. J. Brain Res. 102, 91–101 (1976).

    Article  CAS  Google Scholar 

  15. Iversen, L. L. & Johnston, G. A. R. J. Neurochem., 18, 1939–1950 (1971).

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  17. Fonnum, F., Storm-Mathisen, J. & Walberg, F. Brain Res. 20, 259–275 (1970).

    Article  CAS  Google Scholar 

  18. Fonnum, F. in Research Methods in Neurochemistry (eds. Marks, N. & Rodnight, R.) 3, 253–275 (Plenum, New York, 1975).

    Book  Google Scholar 

  19. Broch, O. J. & Fonnum, F. J. Neurochem. 19, 2049–2055 (1972).

    Article  CAS  Google Scholar 

  20. Carman, J. B., Cowan, W. M., Powell, T. P. S. & Webster, K. E. J. Neurol. Neurosurg. Psychiat. 28, 71–77 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DIVAC, I., FONNUM, F. & STORM-MATHISEN, J. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature 266, 377–378 (1977). https://doi.org/10.1038/266377a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266377a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing