Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic synthesis of bacteriophage fd viral DNA

Abstract

An enzyme system with requirements similar to those for replication of phage fd replicative form (RF) DNA in bacteriophage fd-infected cells has been reconstituted with purified fd gene 2 protein, and DNA polymerase III holoenzyme, DNA binding protein I and rep-protein (rep-helicase) of Escherichia coli. The system generates viral circular single strands, which are infective for E. coli spheroplasts. Parental and newly synthesized DNA are covalently connected in early stages of replication, as expected for DNA replication using the rolling circle mechanism. Single-stranded tails of the rolling circle intermediates are cleaved after a full round of replication by gene 2 protein and circularized by the same enzyme molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beck, E. & Zink, B. Gene 16, 35–58 (1981).

    Article  CAS  Google Scholar 

  2. Hohn, B. & Marvin, D. Bact. Rev. 33, 172–209 (1969).

    PubMed  Google Scholar 

  3. Meyer, T. F. & Geider, K. Proc. natn. Acad. Sci. USA 78, 5416–5420 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Staudenbauer, W. Eur. J. Biochem. 49, 249–256 (1974).

    Article  CAS  Google Scholar 

  5. Glassberg, J., Meyer, R. R. & Kornberg, A. J. Bact. 140, 14–19 (1980).

    Article  Google Scholar 

  6. Brutlag, D., Schekman, R. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 68, 2826–2829 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Schneck, P. K., Staudenbauer, W. L. & Hofschneider, P. H. Eur. J. Biochem. 38, 130–136 (1973).

    Article  CAS  Google Scholar 

  8. Fidanián, H. M. & Ray, D. S. J. molec. Biol. 83, 63–82 (1974).

    Article  Google Scholar 

  9. Denhardt, D. T. Comprehensive Virol. 7, 1–104 (1977).

    CAS  Google Scholar 

  10. Olsen, W. L., Staudenbauer, W. L. & Hofschneider, P. H. Proc. natn. Acad. Sci. U.S.A. 69, 2570–2573 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Ray, D. S., Dueber, J. & Suggs, S. J. Virol. 16, 348–355 (1975).

    Article  CAS  Google Scholar 

  12. Geider, K. & Kornberg, A. J. biol. Chem. 249, 3999–4005 (1974).

    CAS  PubMed  Google Scholar 

  13. Meyer, T. F. & Geider, K. ICN-UCLA Symp. molec. cell. Biol., 579–588 (1980).

  14. Meyer, T. F. & Geider, K. J. biol. Chem. 254, 12642–12646 (1979).

    CAS  PubMed  Google Scholar 

  15. Meyer, T. F., Geider, K., Kurz, C. & Schaller, H. Nature 278, 365–367 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Horiuchi, K. & Zinder, N. D. Proc. natn. Acad. Sci. U.S.A. 73, 2341–2345 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Geider, K., Bäumel, I. & Meyer, T. F. J. biol. Chem. 257 (in the press).

  18. Harth, G., Bäumel, I., Meyer, T. F. & Geider, K. Eur. J. Biochem. 119, 663–668 (1981).

    Article  CAS  Google Scholar 

  19. Meyer, T. F., Bäumel, I., Geider, K. & Bedinger, P. J. biol. Chem. 256, 5810–5813 (1981).

    CAS  PubMed  Google Scholar 

  20. Schneck, P. K., van Dorp, B., Staudenbauer, W. L. & Hofschneider, P. H. Nucleic Acids Res. 5, 1689–1700 (1978).

    Article  CAS  Google Scholar 

  21. Shlomai, J., Polder, L., Arai, K.-I. & Kornberg, A. J. biol. Chem. 256, 5233–5238 (1981).

    CAS  PubMed  Google Scholar 

  22. Arai, N., Polder, L., Arai, K.-I. & Kornberg, A. J. biol. Chem. 256, 5239–5246 (1981).

    CAS  PubMed  Google Scholar 

  23. Shlomai, J. et al. ICN-UCLA Symp. molec. cell. Biol., 545–568 (1980).

  24. Alberts, B. M. et al. ICN-UCLA Symp. molec. cell. Biol., 449–473 (1980).

  25. Tamanoi, F. et al. ICN-UCLA Symp. molec. cell. Biol., 411–428 (1980).

  26. Lanka, E., Scherzinger, E., Günther, E. & Schuster, H. Proc. natn. Acad. Sci. U.S.A. 76, 3632–3636 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Uhlmann, A. & Geider, K. Biochim. biophys. Acta 474, 639–645 (1977).

    Article  CAS  Google Scholar 

  28. Goulian, M., Kornberg, A. & Sinsheimer, R. L. Proc. natn. Acad. Sci. U.S.A. 58, 2321–2328 (1967).

    Article  ADS  CAS  Google Scholar 

  29. Lin, N. S.-C. & Pratt, D. J. molec. Biol. 72, 37–49 (1972).

    Article  CAS  Google Scholar 

  30. Fidanián, H. M. & Ray, D. S. J. molec. Biol. 72, 51–63 (1972).

    Article  Google Scholar 

  31. Meyer, T. F. & Geider, K. J. biol. Chem. 254, 12636–12641 (1979).

    CAS  PubMed  Google Scholar 

  32. Horiuchi, K., Ravetch, J. V. & Zinder, N. D. Cold Spring Harbor Symp. quant. Biol. 43, 389–399 (1978).

    Article  Google Scholar 

  33. Guthrie, G. D. & Sinsheimer, R. L. Biochim. biophys. Acta 72, 290–297 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, T., Geider, K. Enzymatic synthesis of bacteriophage fd viral DNA. Nature 296, 828–832 (1982). https://doi.org/10.1038/296828a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296828a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing