Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis

Abstract

Systematic changes in neuronal connections have been observed during the development of many vertebrate neuronal systems. These changes have usually involved a refinement from an initial exuberance of connections1–4 or a response to some experimental perturbation5–8. Here we report on a system of neuronal connections, which, during a protracted developmental period, undergo ordered changes in response to normally occurring changes in functional requirements. In the frog Xenopus laevis, interocular alignment changes markedly during late larval and post-metamorphic life, producing a progressive enlargement of the binocular portion of the visual field9,10. An intertectal system links the two mid-brain optic tecta and is concerned with the neural representation of binocular visual space. In the adult animal, connections in this system link corresponding points (points receiving information from one locus of binocular visual space) on the two tecta. Changes in eye position with development, however, change the set of corresponding points. Therefore, if the intertectal connections link corresponding tectal points throughout development, they must undergo an ordered change with time. We present electrophysio-logical evidence that the intertectal connections do, indeed, undergo such changes in response to changes in eye alignment, and that the changes are major.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Redfern, P. A. J. Physiol., Lond. 209, 701–709 (1970).

    Article  CAS  Google Scholar 

  2. Crepel, F., Mariani, J. & Delhaye-Bouchaud, N. J. Neurobiol. 7, 567–578 (1976).

    Article  CAS  Google Scholar 

  3. Innocenti, G. M., Fiore, L. & Caminiti, R. Neurosci. Lett. 4, 237–242 (1977).

    Article  CAS  Google Scholar 

  4. LeVay, S., Wiesel, T. N. & Hubel, D. J. comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  5. Raisman, G. Brain Res. 14, 25–48 (1969).

    Article  CAS  Google Scholar 

  6. Hubel, D., Wiesel, T. N. & LeVay, S. Phil. Trans. R. Soc. B 278, 377–409 (1977).

    Article  CAS  Google Scholar 

  7. Lund, R. D., Mitchell, D. E. & Henry, G. H. Brain Res. 144, 169–172 (1978).

    Article  CAS  Google Scholar 

  8. Berman, N. E. & Payne, B. R. Brain Res. 274, 201–212 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Grobstein, P. & Comer, C. Nature 269, 54–56 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Grant, S. & Keating, M. J. J. Embryol. exp. Morph. 92, 43–69 (1986).

    CAS  PubMed  Google Scholar 

  11. Nieuwkoop, P. D. & Faber, J. A Normal Table of Xenopus laevis (Daudin) 2nd edn (North-Holland, Amsterdam, 1967).

  12. Gaze, R. M. & Jacobson, M. Q. Jl exp. Physiol. 47, 273–280 (1962).

    Article  Google Scholar 

  13. Keating, M. J. & Gaze, R. M. Q. Jl exp. Physiol. 55, 284–292 (1970).

    Article  CAS  Google Scholar 

  14. Glasser, S. & Ingle, D. Brain Res. 159, 214–218 (1978).

    Article  CAS  Google Scholar 

  15. Grobstein, P., Comer, C., Hollyday, M. & Archer, S. M. Brain Res. 156, 117–123 (1978).

    Article  CAS  Google Scholar 

  16. Gruberg, E. R. & Udin, S. B. J. comp. Neurol. 179, 487–500 (1978).

    Article  CAS  Google Scholar 

  17. Udin, S. B. & Keating, M. J. J. comp. Neurol. 203, 575–594 (1981).

    Article  CAS  Google Scholar 

  18. Grobstein, P. & Comer, C. J. comp. Neurol. 217, 54–74 (1983).

    Article  CAS  Google Scholar 

  19. Udin, S. B. Nature 301, 336–338 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Keating, M. J. & Kennard, C. Neuroscience (in the press).

  21. Gaze, R. M., Keating, M. J., Szekely, G. & Beazley, L. Proc. R. Soc. B 175, 107–147 (1970).

    ADS  CAS  Google Scholar 

  22. Keating, M. J. Proc. R. soc. B 189, 603–610 (1975).

    CAS  Google Scholar 

  23. Keating, M. J., Beazley, L., Feldman, J. D. & Gaze, R. M. Proc.R. Soc. B 191, 445–466 (1975).

    ADS  CAS  Google Scholar 

  24. Keating, M. J. & Feldman, J. D. Proc. R. Soc. B 191, 467–674 (1975).

    ADS  CAS  Google Scholar 

  25. Grant, S. & Keating, M. J. J. Physiol., Lond. 320, 19P–20P (1981).

    Google Scholar 

  26. Sherman, S. M. Brain Res. 37, 187–203 (1972).

    Article  CAS  Google Scholar 

  27. Olsen, C. R. & Freeman, R. D. Nature 271, 446–447 (1978).

    Article  ADS  Google Scholar 

  28. Elberger, A. J. Expl Brain Res. 36, 71–85 (1979).

    Article  CAS  Google Scholar 

  29. von Grünau, M. W. Expl Brain Res. 37, 41–47 (1979).

    Article  Google Scholar 

  30. Pettigrew, J. D. J. Physiol., Lond. 237, 49–74 (1974).

    Article  CAS  Google Scholar 

  31. LeVay, S., Stryker, M. P. & Schatz, C. J. J. comp. Neurol. 179, 223–244 (1978).

    Article  CAS  Google Scholar 

  32. Innocenti, G. M. Science 212, 824–827 (1981).

    Article  ADS  CAS  Google Scholar 

  33. Hubel, D. & Wiesel, T. N. J. Neurophysiol. 28, 1041–1059 (1965).

    Article  CAS  Google Scholar 

  34. Schlaer, R. Science 173, 638–641 (1971).

    Article  ADS  Google Scholar 

  35. Innocenti, G. M. & Frost, D. O. Nature 280, 231–234 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Dürsteler, M. R. & von der Heydt, R. J. Physiol., Lond. 345, 87–105 (1983).

    Article  Google Scholar 

  37. Keating, M. J. Br. med. Bull. 30, 145–151 (1974).

    Article  CAS  Google Scholar 

  38. Blakemore, C. in Handbook of Sensory Physiology Vol. 8 (eds Hedl, E., Liebowitz, M. W. & Teuber, H. L.) 377–436 (Springer, New York, 1978).

    Google Scholar 

  39. Pettigrew, J. D. in Neuronal Plasticity (ed. Cotman, C. W.) 311–330 (Raven, New York, 1978).

    Google Scholar 

  40. Mitchell, D. E. in Development of Perception Vol. 2 (eds Aslin, J. N., Alberts, J. R. & Peterson, M. R. 3–43 (Academic, New York, 1981).

    Google Scholar 

  41. Merzenich, M. M., Jenkins, W. M. & Middlebrooks, J. C. in Dynamical Aspects of Neocortical Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 397–424 (Wiley, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, S., Keating, M. Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis. Nature 322, 258–261 (1986). https://doi.org/10.1038/322258a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322258a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing