Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C

Abstract

Three distinct classes of protein kinases have been shown to regulate Ca2+ current in excitable tissues. Cyclic AMP-dependent protein kinase mediates the action of noradrenaline on the Ca2+ current of cardiac muscle cells1,2. Cyclic GMP-dependent protein kinase mediates the serotonin-induced modulation of the Ca2+ current in identified snail neurons3. The Ca2+/diacylglycerol-dependent protein kinase (protein kinase C) has also been found to regulate Ca2+ currents of neurons4,5. However, no neurotrans-mitter has yet been shown to regulate Ca2+current through the activation of protein kinase C. We now report that cholecystokinin, a widely occurring neuropeptide6 which is present in molluscan neurons7,8, modulates the Ca2+ current in identified neurons9 of the snail Helix aspersa, and that this effect appears to be mediated by protein kinase C. Specifically, sulphated cholecystokinin octapeptide 26–33 (CCK8), activators of protein kinase C, and intracellular injection of protein kinase C, all shorten the Ca2+-dependent action potential and decrease the amplitude of the Ca2+ current in these cells. All these effects are not reversible within the duration of the experiments. Moreover, intracellular injections of low concentrations of protein kinase C, which are ineffective by themselves, enhance the effectiveness of low concentrations of CCK8 on the Ca2+current.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Osterrieder, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Brum, G., Flockerzi, V., Hofman, F., Osterrieder, W. & Trautwein, W. Pflügers Arch. ges. Physiol. 398, 146–154 (1983).

    Article  Google Scholar 

  3. Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H. M., Nairn, A. C. & Greengard, P. Nature 323, 812–814 (1986).

    Article  ADS  CAS  Google Scholar 

  4. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarek, L. K. Nature 313, 313–316 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Rane, S. G. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Crawley, J. N. Ann. N.Y. Acad. Sci. 448, 1–8 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Osborne, N. N., Cuello, A. C. & Dockray, C. G. Science 216, 409–411 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Ono, J. K. Neuroscience 18, 957–974 (1986).

    Article  CAS  Google Scholar 

  9. Kerkut, G. A., Lambert, J. C. D., Gayton, R. J., Loker, J. E. & Walker, R. J. Comp. Biochem. Physiol. 50A, 1–25 (1975).

    Article  Google Scholar 

  10. Tillotson, D. Proc. natn. Acad. Sci. U.S.A. 76, 1497–1500 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  Google Scholar 

  12. Nishizuka, Y. Science 225, 1365–1370 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Sankaran, H., Goldfine, I. D., Deveney, C. W., Wong, K-Y. & Williams, J. A. J. biol. Chem. 255, 1849–1853 (1980).

    CAS  PubMed  Google Scholar 

  14. Williams, J. A., Vigna, S. R., Sakamoto, C. & Goldfine, I. D. Ann. N.Y. Acad. Sci. 448, 220–230 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Paupardin-Tritsch, D., Colombaioni, L., Deterre, P. & Gerschenfeld, H. M. J. Neurosci. 5, 2522–2532 (1985).

    Article  CAS  Google Scholar 

  16. Strong, J. A., Fox, A. P., Tsien, R. W. & Kaczmarek, L. K. Biophys. J. 49, 430a (1986).

    Google Scholar 

  17. Farley, J. & Auerbach, S. Nature 319, 220–223 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Madison, D. V., Malenka, R. C. & Nicoll, R. A. Nature 321, 695–697 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Higashida, H. & Brown, D. A. Nature 323, 333–335 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Dodd, J. & Kelly, J. S. Brain Res. 205, 337–350 (1981).

    Article  CAS  Google Scholar 

  21. Brooks, P. A. & Kelly, J. S. Ann. N.Y. Acad. Sci. 448, 361–374 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Willets, J., Urban, I., Murase, K. & Randic, M. Ann. N.Y. Acad. Sci. 448, 385–401 (1985).

    Article  ADS  Google Scholar 

  23. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S. & Nishizuka, Y. J. biol. Chem. 257, 13341–13348 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, C., Paupardin-Tritsch, D., Nairn, A. et al. Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C. Nature 325, 809–811 (1987). https://doi.org/10.1038/325809a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325809a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing