Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lentiviral-mediated delivery of siRNAs for antiviral therapy

Abstract

Lentiviral vectors portend a promising system to deliver antiviral genes for treating viral infections such as HIV-1 as they are capable of stably transducing both dividing and nondividing cells. Recently, small interfering RNAs (siRNAs) have been shown to be quite efficacious in silencing target genes. RNA interference is a natural mechanism, conserved in nature from Yeast to Humans, by which siRNAs operate to specifically and potently downregulate the expression of a target gene either transcriptionally (targeted to DNA) or post-transcriptionally (targeted to mRNA). The specificity and relative simplicity of siRNA design insinuate that siRNAs will prove to be favorable therapeutic agents. Since siRNAs are a small nucleic acid reagents, they are unlikely to elicit an immune response and genes encoding these siRNAs can be easily manipulated and delivered by lentiviral vectors to target cells. As such, lentiviral vectors expressing siRNAs represent a potential therapeutic approach for the treatment of viral infections such as HIV-1. This review will focus on the development, lentiviral based delivery, and the potential therapeutic use of siRNAs in treating viral infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Montgomery MK, Xu S, Fire A . RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 1998; 95: 15502–15507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishikura K . A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell 2001; 107: 415–418.

    Article  CAS  PubMed  Google Scholar 

  3. Sharp PA . RNA interference. Genes Develop 2001; 15: 485–490.

    Article  CAS  PubMed  Google Scholar 

  4. Sui G, Soohoo C, Affar E, Gay F, Shi Y, Forrester WC et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 5515–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436: 740–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haase A, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO J 2005; 6 (10): 961–967.

    Article  CAS  Google Scholar 

  7. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R . MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005; 7: 719–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al. Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science 2004; 305 (5689): 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T . Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563–574.

    Article  CAS  PubMed  Google Scholar 

  10. Hamada M, Ohtsuka T, Kawaida R, Koizumi M, Morita K, Furukawa H et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3’-ends of siRNAs. Antisense Nucleic Acid Drug Dev 2002; 12: 301–309.

    Article  CAS  PubMed  Google Scholar 

  11. Sijen T, Vign I, Rebocho A, Blokland R, Roelofs D, Mol J et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 2001; 11: 436–440.

    Article  CAS  PubMed  Google Scholar 

  12. Pal-Bhadra M, Bhadra U, Birchler JA . RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 2002; 9: 315–327.

    Article  CAS  PubMed  Google Scholar 

  13. Bosher JM, Dugourcq P, Sookhareea S, Labouesse M . RNA interference can target Pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon. Genetics 1999; 153: 1245–1256.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawasaki H, Taira K . Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 2004; 9: 211–217.

    Article  Google Scholar 

  15. Morris KV, Chan SW, Jacobsen SE, Looney DJ . Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305 (5688): 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  16. Morris KV, Chan SW, Jacobsen SE, Looney DJ . Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305: 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki H, Taira K, Morris KV . siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle 2005; 4 (3): 442–448.

    Article  CAS  PubMed  Google Scholar 

  18. Castanotto D, Rossi JJ . Construction and transfection of PCR products expressing siRNAs or shRNAs in mammalian cells. Methods Mol Biol 2004; 252: 509–514.

    CAS  PubMed  Google Scholar 

  19. Morris KV, Chung C, Witke W, Looney DJ . Inhibition of HIV-1 replication by siRNA targeting conserved regions of gag/pol. RNA Biol 2004; 1: 114–117.

    Article  CAS  Google Scholar 

  20. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H . Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res 2002; 30: 1757–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwarz DSEA . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    Article  CAS  PubMed  Google Scholar 

  22. Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.

    Article  CAS  PubMed  Google Scholar 

  23. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee S et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681–686.

    Article  CAS  PubMed  Google Scholar 

  24. Tuschl T . Expanding small RNA interference. Nat Biotechnol 2002; 20: 446–448.

    Article  CAS  PubMed  Google Scholar 

  25. Song E, Lee S, Dykxhoorn DM, Novina C, Zhang D, Crawford K et al. Sustained Small Interfering RNA-Mediated Human Immunodeficiency Virus Type 1 Inhibition in Primary Macrophages. J Virol 2003; 77: 7174–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scherr M, Rossi JJ . Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res 1998; 26: 5079–5085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richman DD, Corbeil J, Looney D, Ignacio C, Spector SA, Sullivan J et al. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol 1994; 68: 1660–1666.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Coburn GA, Cullen BR . Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA interference. J Virol 2002; 76: 9225–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee NS, Dohjima T, Bauer G, Li H, Li M, Ehsani A et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 19: 500–505.

    Article  Google Scholar 

  30. Surabhi RM, Gaynor RB . RNA Interference Directed against Viral and Cellular Targets Inhibits Human Immunodeficiency Virus Type 1 Replication. J Virol 2002; 76: 12963–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacque J, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 26: 1–4.

    Google Scholar 

  32. Qin X, An D, Chen ISY, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2002; 100: 183–188.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Radhakrishnan SK, Layden TJ, Gartel AL . RNA interference as a new strategy against viral hepatitis. Virology 2004; 323: 173–181.

    Article  CAS  PubMed  Google Scholar 

  34. Llave C, Kasschau KD, Carrington JC . Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA 2000; 97: 13401–13406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johansen LK, Carrington JC . Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 2001; 126: 930–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mallory AC, Ely L, Smith TH, Marathe R, Anandalakshmi R, Fagard M et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 2001; 13: 571–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamilton A, Voinnet O, Chappell L, Baulcombe D . Two classes of short interfering RNA in RNA silencing. EMBO J 2002; 21: 4671–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Li WX, Ding SW . Induction and suppression of RNA silencing by an animal virus. Science 2002; 296: 1319–1321.

    Article  CAS  PubMed  Google Scholar 

  39. Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH . A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc Natl Acad Sci USA 2002; 99: 15228–15233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gitlin L, Karelsky S, Andino R . Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 26: 1–5.

    Google Scholar 

  41. Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B . HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005; 33: 796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjea A, Li MJ, Bauer G, Remling L, Lee NS, Rossi J et al. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther 2003; 8: 62–71.

    Article  CAS  PubMed  Google Scholar 

  43. Paddison PJ, Caudy AA, Sachidanandam R, Hannon GJ . Short hairpin activated gene silencing in mammalian cells. Methods Mol Biol 2004; 265: 85–100.

    CAS  PubMed  Google Scholar 

  44. Wu X, Li Y, Crise B, Burgess SM . Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  45. Buchschacher GL, Wong-Staal F . Development of lentiviral vectors for gene therapy for human diseases. Blood 2000; 95: 2499–2504.

    CAS  PubMed  Google Scholar 

  46. Greber UF, Fassati A . Nuclear Import of Viral DNA Genomes. Traffic 2003; 4: 136–143.

    Article  CAS  PubMed  Google Scholar 

  47. Gervaix A, Schwarz L, Law P, Ho AD, Looney D, Wong-Staal F . Gene Therapy Targeting Peripheral Blood CD34+ Hematopoietic Stem Cells of HIV-Infected Individuals. Human Gene Ther 1997; 8: 2229–2238.

    Article  CAS  Google Scholar 

  48. Yam PY, Li S, Wu JU, Jazaia JA, Yee J . Design of HIV Vectors for Efficient Gene Delivery into Human Hematopoietic Cells. Mol Ther 2002; 5: 479–484.

    Article  CAS  PubMed  Google Scholar 

  49. Poeschla E, Corbeau P, Wong-Staal F . Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci USA 1996; 93: 11395–11399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price MA, Case SS, Carbonaro DA, Yu XJ, Petersen D, Sabo KM et al. Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells. Mol Ther 2002; 6: 645–652.

    Article  CAS  PubMed  Google Scholar 

  51. Quinonez R, Sutton RE . Lentiviral Vectors for gene delivery into cells. DNA Cell Biol 2002; 12: 937–951.

    Article  Google Scholar 

  52. White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J et al. Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 1999; 73: 2832–2840.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Browning MT, Schmidt RD, Lew KA, Rizvi TA . Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 2001; 75: 5129–5140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix J, Cimarelli A . Heterologous human immunodeficiency virus type 1 lentiviral vectors packaging a simian immunodeficiency virus-derived genome display a specific postentry transduction defect in dendritic cells. J Virol 2003; 787: 9295–9304.

    Article  Google Scholar 

  55. Morris KV, Gilbert J, Wong-Staal F, Gasmi M, Looney DJ . Transduction of cell lines and primary cells by FIV-packaged HIV vectors. Mol Ther 2004; 10: 181–190.

    Article  CAS  PubMed  Google Scholar 

  56. Kobinger GP, Weiner DJ, Yu Q, Wilson JM . Filovirus-psuedotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 2001; 19: 225–230.

    Article  CAS  PubMed  Google Scholar 

  57. Sandrin V, Russell SJ, Cosset FL . Targeting retroviral and lentiviral vectors. Curr Topics Microbiol Immunol 2003; 281: 137–178.

    CAS  Google Scholar 

  58. Boerger AL, Snitkovsky S, Young JAT . Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc Natl Acad Sci USA 1999; 96: 9867–9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sledz CA, Holko M, De Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    Article  CAS  PubMed  Google Scholar 

  60. Pebernard S, Iggo RD . Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 2004; 72: 103–111.

    Article  CAS  PubMed  Google Scholar 

  61. Persengiev SP, Zhu X, Green MR . Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10: 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michienzi AEA . RNA-mediated inhibition of HIV in a gene therapy setting. Ann NY Acad Sci 2003; 1002: 63–71.

    Article  CAS  PubMed  Google Scholar 

  63. Amado RGEA . Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 2004; 15: 251–262.

    Article  CAS  PubMed  Google Scholar 

  64. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G . A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997; 25: 2730–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ritter W, Plank C, Lausier J, Rudolph C, Zink D, Reinhardt D et al. A novel transfecting peptide comprising a tetrameric nuclear localization sequence. J Mol Med 2003; 81: 708–717.

    Article  CAS  PubMed  Google Scholar 

  66. Kawasaki H, Taira K . Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 2004; 431 (7005): 211–217.

    Article  CAS  PubMed  Google Scholar 

  67. Ting AH, Schuebel KE, Herman JG, Baylin SB . Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 2005; 37 (8): 906–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sioud M, Sorensen DR . Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003; 312: 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  69. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    Article  CAS  PubMed  Google Scholar 

  70. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . Nuclear export of microRNA precursors. Science 2004; 303: 95–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, K., Rossi, J. Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther 13, 553–558 (2006). https://doi.org/10.1038/sj.gt.3302688

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302688

Keywords

This article is cited by

Search

Quick links