Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation

Abstract

DIACYLGLYCEROL analogues (for example 1,2-oleoylacetyl-glycerol, OAG) and phorbol esters are activators of protein kinase C, and have been widely used to study the function of this enzyme in both intact cells and cell-free preparations1,2. Electrophysiological studies have shown that these activators can either depress3–6 or increase Ca2+ currents7–9, or decrease K+ currents10,11 when applied outside the cell. It has been assumed that these effects are mediated by protein kinase C activation. Here we report that micromolar levels of OAG and phorbol esters depress Ca2+ currents in chick sensory neurons independently of their effect as activators of protein kinase C. The depression of the Ca2+ current is rapid and is unaffected by intracellular application of the protein kinase C inhibitors staurosporin, sphingosine and H-712. Furthermore, the activators were ineffective when applied intracellularly, indicating that their site of action is on the outside of the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nishizuka, Y. Science 225, 1365–1370 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Nishizuka, Y. Nature 334, 661–665 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rane, S. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Lewis, D. & Weight, F. Neuroendosci. 47, 169–175 (1988).

    Article  CAS  Google Scholar 

  5. Marchetti, C. & Brown, A. Am. J. Physiol. 23, C206–C210 (1988).

    Article  Google Scholar 

  6. Lacerda, A., Rampe, D. & Brown, A. M. Nature 335, 249–251 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. DeRiemer, S., Strong, J., Albert, K., Greengard, P. & Kaczmarek, L. Nature 313, 313–316 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Leonard, J. P., Nargeot, J., Snutch, T. P., Davidson, N. & Lester, H. A. J. Neurosci. 7, 875–881 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sigel, E. & Baur, R. Proc. natn. Acad. Sci. U.S.A. 85, 6192–6196 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Baraban, J., Synder, S. & Alger, B. Proc. natn. Acad. Sci. U.S.A. 82, 2538–2542 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Malenka, R., Madison, D., Andrade, R. & Nicoll, R., J. Neurosci. 6, 475–480 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hidaka, H. & Hagiwara, M. Trends Pharmacol. Sci. 8, 162–164 (1987).

    Article  CAS  Google Scholar 

  13. Swandulla, D. & Armstrong, C. M. J. gen. Physiol. 92, 197–218 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  15. Kaibuchi, K. et al. J. biol. Chem. 258, 6701–6704 (1983).

    CAS  PubMed  Google Scholar 

  16. Carbone, E. & Lux, H. D. Nature 310, 501–503 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Nowycky, M., Fox, A. & Tsien, R. Nature 316, 440–443 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Carbone, E. & Lux, H. D. J. Physiol. 386, 547–570 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fox, A., Nowycky, M. & Tsien, R. J. Physiol. 394, 149–172 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganong, B., Loomis, C., Hannun, Y. & Bell, R. Proc. nantn. Acad. Sci. U.S.A. 83, 1184–1188 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Blumberg, P. M. et al. Biochem. Pharmac. 33, 933–940 (1984).

    Article  CAS  Google Scholar 

  22. Davis, N., Lux, H. D. & Morad, M. J. Physiol. 400, 159–187 (1988).

    Article  Google Scholar 

  23. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. & Tomita, F. Biochem. biophys. Res. Commun. 135, 397–402 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Hannun, Y., Loomis, C., Merrill, A. & Bell, R. J. biol. Chem. 261, 12604–12609 (1986).

    CAS  PubMed  Google Scholar 

  25. Hannun, Y. & Bell, R. in Cell Calcium and the Control of Membrane Transport (eds Mandel, L. & Eaton, D.) 230 (Rockefeller University Press, New York, 1987).

    Google Scholar 

  26. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Forscher, P. & Oxford, G. J. gen. Physiol. 85, 743–763 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Byerly, L. & Yazejian, B. J. Physiol. 370, 631–650 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Armstrong, D. & Eckert, R. Proc. natn. Acad. Sci U.S.A. 84, 2518–2522 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Chad, J. & Eckert, R., J. Physiol. 378, 31–51 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartzell, C. & Fischmeister, R. Molec. Pharmac. 32, 639–645 (1987).

    CAS  Google Scholar 

  33. Coombs, J. & Thompson, S. J. Neurosci. 7, 443–452 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoshi, T., Garber, S. & Aldrich, R. Science 240, 1652–1655 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Watanabe, K. & Gola, M. Neurosci. Lett. 78, 211–216 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Krause, D., Lee, S. & Deutsch, C., Pflügers Arch. ges. Physiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockberger, P., Toselli, M., Swandulla, D. et al. A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature 338, 340–342 (1989). https://doi.org/10.1038/338340a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338340a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing