Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A direct nicotinic receptor-mediated inhibition recorded intracellularly in vitro

Abstract

ACETYLCHOLINE activates both nicotinic and muscarinic receptors in the central nervous system1. Although the action of acetylcholine at muscarinic receptors has been well characterized, relatively little is known at the cellular level concerning nicotinic receptor stimulation in brain. Central nicotinic receptors have been implicated in Alzheimer's disease2, seizure activity3, the generation of slow-wave theta rhythm in the hippocampus4 and the potential abuse liability of nicotine5. At the neuronal level, nicotinic agonists have been most often associated with postsynaptically mediated excitation and membrane depolarization at various sites, including Renshaw spinal motoneurons6, locus coeruleus7 and the medial habenular nucleus8. Nicotine acting presynaptically can produce either excitation or inhibition indirectly through the release of endogeneous transmitters or modulators9–12. Whereas a direct inhibitory effect of nicotine has been suggested by one in vivo extracellular recording study in rat cerebellar Purkinje neurons13, the mechanism(s) underlying this action is not yet known. We now report our findings obtained using in vitro intracellular methods in a submerged brain slice preparation in which application of nicotinic agonists to rat dorsolateral septal neurons reveal a direct membrane hyperpolarization mediated by an increase in potassium conductance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

  2. Whitehouse, P. J. et al. Arch. Neurol. 45, 722–724 (1988).

    Article  CAS  Google Scholar 

  3. Miner, L. L., Marks, M. J. & Collins, A. L. J. Pharmacol. expt. Ther. 239, 853–860 (1986).

    CAS  Google Scholar 

  4. Bland, B. H. & Colom, L. V. Brain Res. 440, 167–171 (1988).

    Article  CAS  Google Scholar 

  5. Byrne, G. Science 240, 1143 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Curtis, D. R. & Ryall, R. W. Expl Brain Res. 2, 6–80 (1966).

    Google Scholar 

  7. Egan, T. M. & North, R. A. Neuroscience 19, 565–571 (1986).

    Article  CAS  Google Scholar 

  8. McCormick, D. A. & Prince, D. A. J. Neurosci. 7, 742–752 (1987).

    Article  CAS  Google Scholar 

  9. Chesselet, M. F. Neuroscience 12, 347–375 (1984).

    Article  CAS  Google Scholar 

  10. Westfall, T. C. Neuropharmacology 13, 693–700 (1974).

    Article  CAS  Google Scholar 

  11. Hery, F., Bourgoin, S., Hamon, M., Ternaux, J. P. & Glowinski, J. Naunyn Schmiedebergs Arch. Pharmac. 396, 91–97 (1977).

    Article  Google Scholar 

  12. Freund, R. K., Jungschaffer, D. A., Collins, A. C. & Wehner, J. M. Brain Res. 453, 215–220 (1988).

    Article  CAS  Google Scholar 

  13. de la Garza, R., McGuire, T. J., Freedman, R. & Hoffer, B. J. Neurosci. Lett. 80, 303–308 (1987).

    Article  CAS  Google Scholar 

  14. DeFrance, J. F. in The Septal Nuclei (ed. DeFrance, J. F.) 185–227 (Plenum, New York, 1976).

    Google Scholar 

  15. McLennan, H. & Miller, J. J. J. Physiol. Lond. 237, 607–624 (1974).

    Article  CAS  Google Scholar 

  16. Swanson, L. W. & Cowan, W. M. J. comp. Neurol. 186, 621–656 (1979).

    Article  CAS  Google Scholar 

  17. Green, J. D. & Arduini, A. J. Neurophysiol. 17, 553–557 (1954).

    Article  Google Scholar 

  18. Stumpf, C., Petsche, H. & Gogolak, G. Electroenceph. clin. Neurophysiol. 14, 212–219 (1962).

    Article  CAS  Google Scholar 

  19. Bland, S. K. & Bland, B. H. Brain Res. 375, 102–116 (1986).

    Article  CAS  Google Scholar 

  20. Harkmark, W., Mellgren, S. I. & Srebo, B. Brain Res. 95, 281–289 (1975).

    Article  CAS  Google Scholar 

  21. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Co-ordinates Plate 17 (Academic, City, 1986).

    Google Scholar 

  22. Rainbow, T. C., Schwartz, R. D., Parsons, B. & Kellar, K. Neurosci. Lett. 50, 193–196 (1984).

    Article  CAS  Google Scholar 

  23. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B. & Pert, A. J. Neurosci. 5, 1307–1315 (1985).

    Article  CAS  Google Scholar 

  24. Schwartz, R. D. Life Sci. 38, 2111–2119 (1986).

    Article  CAS  Google Scholar 

  25. Nonaka, R. & Moroh, I. Brain Res. 296, 295–303 (1984).

    Article  CAS  Google Scholar 

  26. Satoh, K. & Fibiger, H. C. J. comp. Neurol. 253, 277–302 (1986).

    Article  CAS  Google Scholar 

  27. Hallanger, A. E. & Wainer, B. H. J. comp. Neurol. 274, 483–515 (1988).

    Article  CAS  Google Scholar 

  28. DeFrance, J. F., Yoshihara, H., McCrea, R. A. & Kitai, S. T. Expl Neurol. 48, 502–523 (1975).

    Article  CAS  Google Scholar 

  29. Segal, M. Life Sci. 14, 1345–1351 (1974).

    Article  CAS  Google Scholar 

  30. Hasuo, H., Gallagher, J. P. & Shinnick-Gallagher, P. Brain Res. 438, 323–327 (1988).

    Article  CAS  Google Scholar 

  31. Wong, L. A., Hasuo, H. & Gallagher, J. P. Soc. Neurosci. Abstr. 13, 268 (1987).

    Google Scholar 

  32. Taylor, P. in The Pharmacological Basis of Therapeutics p 218 (Macmillan, New York, 1985).

    Google Scholar 

  33. Chiappinelli, V. A. Pharmac. Ther. 31, 1–32 (1985).

    Article  CAS  Google Scholar 

  34. Loring, R. H., Andrews, D., Lane, W. & Zigmond, R. E. Brain Res. 385, 30–37 (1986).

    Article  CAS  Google Scholar 

  35. Stevens, D. R., Gallagher, J. P. & Shinnick-Gallagher, P. Synapse 1, 184–190 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, L., Gallagher, J. A direct nicotinic receptor-mediated inhibition recorded intracellularly in vitro. Nature 341, 439–442 (1989). https://doi.org/10.1038/341439a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341439a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing