Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Weather and climate on Mars

Abstract

Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day–night and winter–summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mars atmosphere temperature profiles measured by Viking5 compared with the standard atmosphere profile for Earth.
Figure 2: Cross-sections of zonal mean temperature and zonal wind for northern-hemisphere winter solstice (Ls=270°) from MGS-TES observations.
Figure 3: Zonal mean general circulation components from the GCM of Haberle et al.14.
Figure 4: Local-to-regional dust storms observed by Cantor et al.43.
Figure 5: Temperature and dust opacity versus latitude and seasonal index (Ls) as inferred from MGS-TES by Smith et al.9.

Similar content being viewed by others

References

  1. Zurek, R. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  2. James, P., Kieffer, H. & Paige, D. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 934–968 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  3. Gierasch, P. & Goody, R. The effect of dust on the temperature of the Mars atmosphere. J. Atmos. Sci. 29, 400–402 (1972).

    Article  ADS  Google Scholar 

  4. Kahn, R., Martin, T., Zurek, R. & Lee, S. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1017–1053 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  5. Seiff, A. & Kirk, D. Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Schofield, J. et al. The Mars Pathfinder Atmospheric Structure Investigation/Meterology (ASI/MET) experiment. Science 278, 1752–1758 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Martin, T. & Kieffer, H. Thermal infrared measurements of the martian atmosphere 2. The 15 μm band measurements. J. Geophys. Res. 84, 2843–2852 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Wilson, R. & Richardson, M. The martian atmosphere during the Viking mission: infrared measurements of atmospheric temperatures revisited. Icarus 145, 555–579 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Smith, M. et al. TES observations of atmospheric thermal structure and aerosol distribution during MGS mapping. J. Geophys. Res. 106 (in the press).

  10. Clancy, R. et al. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Hinson, D. et al. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999).

    Article  ADS  Google Scholar 

  12. Tillman, J., Johnson, N., Guttorp, P. & Percival, D. The martian annual pressure cycle: years without great dust storms. J. Geophys. Res. 98, 10963–10971 (1993).

    Article  ADS  Google Scholar 

  13. Lewis, S. et al. A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Haberle, R. et al. Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, 1. The zonal-mean circulation. J. Geophys. Res. 102, 13301–13311 (1993).

    Article  ADS  Google Scholar 

  15. Wilson, J. & Hamilton, K. Comprehensive model simulation of thermal tides in the martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996).

    Article  ADS  Google Scholar 

  16. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24156–24175 (1999).

    Article  ADS  Google Scholar 

  17. Mintz, Y. in The Atmospheres of Mars and Venus (eds Kellogg, W. & Sagan, C.) NAS-NRC Publication 944, 107–146 (National Research Council, Washington DC, 1961).

    Google Scholar 

  18. Santee, M. & Crisp, D. Thermal structure and dust loading of the martian atmosphere during late summer: Mariner 9 revisited. J. Geophys. Res. 98, 3261–3279 (1993).

    Article  ADS  Google Scholar 

  19. Hartmann, D. Global Physical Climatology 140–143 (Academic, San Diego, 1994).

    Google Scholar 

  20. Conrath, B. et al. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res. 104, 9509–9519 (1999).

    Google Scholar 

  21. Thomas, P., Veverka, J., Gineris, D. & Wong, L. “Dust” streaks on Mars. Icarus 49, 398–415 (1984).

    Google Scholar 

  22. Greeley, R., Skypeck, A. & Pollack, J. Martian aeolian features and deposits: comparisons with general circulation model results. J. Geophys. Res. 98, 3183–3196 (1993).

    Article  ADS  Google Scholar 

  23. Barnes, J. Midlatitude disturbances in the Martian atmosphere: a second Mars year. J. Atmos. Sci. 38, 225–234 (1981).

    Article  ADS  Google Scholar 

  24. Barnes, J. Linear baroclinic instability in the Martian atmosphere. J. Atmos. Sci. 41, 1536–1550 (1984).

    Article  ADS  Google Scholar 

  25. Hollingsworth, J. et al. Orographic control of storm zones on Mars. Nature 380, 413–416 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Gierasch, P., Thomas, P., French, R. & Veverka, J. Spiral clouds on Mars: a new atmospheric phenomenon. Geophys. Res. Lett. 6, 405–408 (1979).

    Article  ADS  Google Scholar 

  27. James, P., Hollingsworth, J., Wolff, J. & Lee, S. North polar dust storms in early spring on Mars. Icarus 38, 64–73 (1999).

    Article  ADS  Google Scholar 

  28. Conrath, B. Planetary-wave structure in the Martian atmosphere. Icarus 48, 246–255 (1981).

    Article  ADS  Google Scholar 

  29. Hollingsworth, J. & Barnes, J. Forced stationary planetary waves in Mars's winter atmosphere. J. Atmos. Sci. 53, 428–448 (1996).

    Article  ADS  Google Scholar 

  30. Briggs, G. & Leovy, C. Mariner 9 observations of the Mars north polar hood. Bull. Am. Meteorol. Soc. 55, 278–296 (1972).

    Article  Google Scholar 

  31. Zurek, R. Diurnal tide in the martian atmosphere. J. Atmos. Sci. 33, 321–337 (1976).

    Article  ADS  Google Scholar 

  32. Zurek, R. & Leovy, C. Thermal tides in the dusty Martian atmosphere: a verification of theory. Science 213, 437–439 (1981).

    Article  ADS  CAS  Google Scholar 

  33. Hinson, D., Hollingsworth, J., Wilson, R. & Tyler, G. Radio occultation measurements of forced atmospheric waves on Mars. J. Geophys. Res. 106 (in the press).

  34. Tillman, J. Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433–9451 (1988).

    Article  ADS  Google Scholar 

  35. Keating, G. et al. Evidence for large global diurnal Kelvin wave in the Mars upper atmosphere. Bull. Am. Astron. Soc. 32, Abstr. 50:02 (2000).

  36. Zurek, R. & Haberle, R. Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere. J. Atmos. Sci. 45, 2469–2485 (1988).

    Article  ADS  Google Scholar 

  37. Murphy, J., Leovy, C. & Tillman, J. Observations of martian surface winds at the Viking Lander 1 site. J. Geophys. Res. 95, 14555–14576 (1990).

    Article  ADS  Google Scholar 

  38. Joshi, M., Lewis, S., Read, P. & Catling, D. Western boundary currents in the atmosphere of Mars. Nature 367, 548–551 (1994).

    Article  ADS  Google Scholar 

  39. Greeley, R., Lancaster, N., Lee, S. & Thomas, P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  40. Ryan, J., Sharman, R. & Lucich, R. Local Mars dust storm generation mechanism. Geophys. Res. Lett. 8, 899–901 (1981).

    Article  ADS  Google Scholar 

  41. Arvidson, R. et al. Three Mars years: Viking lander imaging observations. Science 222, 463–468 (1983).

    Article  ADS  CAS  Google Scholar 

  42. Peterfreund, A. & Kieffer, H. Thermal and infrared properties of the martian atmosphere. 3: Local dust clouds. J. Geophys. Res. 84, 2853–2862 (1979).

    Article  ADS  CAS  Google Scholar 

  43. Cantor, B., James, P., Caplinger, M. & Wolff, M. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106 (in the press).

  44. Ryan, J. & Carroll, J. Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970).

    Article  ADS  Google Scholar 

  45. Thomas, P. & Gierasch, P. Dust devils on Mars. Science 230, 175–177 (1985).

    Article  ADS  CAS  Google Scholar 

  46. Leovy, C., Zurek, R. & Pollack, J. Mechanisms of Mars dust storms. J. Atmos. Sci. 30, 749–762 (1973).

    Article  ADS  Google Scholar 

  47. Leovy, C., Tillman, J., Guest, W. & Barnes, J. in Recent Advances in Planetary Meteorology (ed G. Hunt) 69–84 (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  48. Anderson, E. & Leovy, C. Mariner 9 television limb observations of dust and ice hazes on Mars. J. Atmos. Sci. 35, 723–234 (1978).

    Article  ADS  Google Scholar 

  49. Smith, M., Pearl, J., Conrath, B. & Christensen, P. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 9539–9552 (2000).

    Article  ADS  CAS  Google Scholar 

  50. Murphy, J. et al. Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res. 100, 26357–26376 (1995).

    Article  ADS  Google Scholar 

  51. Zurek, R. & Martin, L. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 98, 3247–3259 (1993).

    Article  ADS  Google Scholar 

  52. Haberle, R. Interannual variability of global dust storms on Mars. Science 234, 459–461 (1986).

    Article  ADS  CAS  Google Scholar 

  53. Anderson, F. et al. Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model. J. Geophys. Res. 104, 18991–19002 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank M. Smith for making available Figs 2 and 5, and B. Cantor for making available Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conway Leovy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leovy, C. Weather and climate on Mars. Nature 412, 245–249 (2001). https://doi.org/10.1038/35084192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084192

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing