Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A genome wide linkage study of obesity as secondary effect of antipsychotics in multigenerational families of eastern Quebec affected by psychoses

Abstract

Antipsychotics can induce in schizophrenic (SZ) and bipolar disorder (BP) patients serious body weight changes that increase risk for noncompliance to medication, and risk for cardiovascular diseases and diabetes. A genetic origin for this susceptibility to weight changes has been hypothesized because only a proportion of treated patients are affected, the degree of affection differing also in rates and magnitudes. In a first genome scan on obesity under antipsychotics in SZ and BP, we analyzed 21 multigenerational kindreds (508 family members) including several patients treated for a minimum of 3 years mainly with haloperidol or chlopromazine. Obesity was defined from medical files and was shown to be 2.5 times more frequent in patients treated with antipsychotics than in untreated family members (30 vs 12%). The nine pedigrees that showed at least two occurrences of obesity under antipsychotics were submitted to model-based linkage analyses. We observed a suggestive linkage with a multipoint Lod score (MLS) of 2.74 at 12q24. This linkage finding vanished when we used as phenotypes, obesity unrelated to antipsychotics, and when we used SZ or BP. This suggests that this positive linkage result with obesity is specific to the use of antipsychotics. A potential candidate gene for this linkage is the pro-melanin-concentrating hormone (PMCH) gene located at less then 1 cM of the linkage. PMCH encodes a neuropeptide involved in the control of food intake, energy expenditure, and in anxiety/depression. This first genome scan targeting the obesity side effect of antipsychotics identified 12q24 as a susceptibility region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Stanton JM . Weight gain associated with neuroleptic medication: a review. Schizophr Bull 1995; 21: 463–472.

    Article  CAS  PubMed  Google Scholar 

  2. National Heart, Lung, and Blood Institute. Obesity Education Initiative: Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. US Department of Health and Human Services, 1998.

  3. Falloon I, Watt DC, Shepherd M . A comparative controlled trial of pimozide and fluphenazine decanoate in the continuation therapy of schizophrenia. Psychol Med 1978; 8: 59–70.

    Article  CAS  PubMed  Google Scholar 

  4. Jones B, Basson BR, Walker DJ, Crawford AM, Kinon BJ . Weight change and atypical antipsychotic treatment in patients with schizophrenia. J Clin Psychiatry 2001; 62 (Suppl 2): 41–44.

    CAS  PubMed  Google Scholar 

  5. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999; 156: 1686–1696.

    CAS  PubMed  Google Scholar 

  6. Bouchard RH, Demers MF, Simoneau I, Almeras N, Villeneuve J, Mottard JP et al. Atypical antipsychotics and cardiovascular risk in schizophrenic patients. J Clin Psychopharmacol 2001; 21: 110–111.

    Article  CAS  PubMed  Google Scholar 

  7. Stunkard AJ . Genetic contributions to human obesity. Res Publ Assoc Res Nerv Ment Dis 1991; 69: 205–218.

    CAS  PubMed  Google Scholar 

  8. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96.

    Article  CAS  PubMed  Google Scholar 

  9. Richelson E, Souder T . Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 2000; 68: 29–39.

    Article  CAS  PubMed  Google Scholar 

  10. Wetterling T . Bodyweight gain with atypical antipsychotics. A comparative review. Drug Saf 2001; 24: 59–73.

    Article  CAS  PubMed  Google Scholar 

  11. Nonogaki K, Strack AM, Dallman MF, Tecott LH . Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 1998; 4: 1152–1156.

    Article  CAS  PubMed  Google Scholar 

  12. Yuan X, Yamada K, Ishiyama-Shigemoto S, Koyama W, Nonaka K . Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia 2000; 43: 373–376.

    Article  CAS  PubMed  Google Scholar 

  13. Aubert R, Betoulle D, Herbeth B, Siest G, Fumeron F . 5-HT2A receptor gene polymorphism is associated with food and alcohol intake in obese people. Int J Obes Relat Metab Disord 2000; 24: 920–924.

    Article  CAS  PubMed  Google Scholar 

  14. Levitan RD, Kaplan AS, Masellis M, Basile VS, Walker ML, Lipson N et al. Polymorphism of the serotonin 5-HT1B receptor gene (HTR1B) associated with minimum lifetime body mass index in women with bulimia nervosa. Biol Psychiatry 2001; 50: 640–643.

    Article  CAS  PubMed  Google Scholar 

  15. Rietschel M, Naber D, Fimmers R, Moller HJ, Propping P, Nothen MM . Efficacy and side-effects of clozapine not associated with variation in the 5-HT2C receptor. Neuroreport 1997; 8: 1999–2003.

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds GP, Zhang ZJ, Zhang XB . Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002; 359: 2086–2087.

    Article  CAS  PubMed  Google Scholar 

  17. Sachse C, Brockmoller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellingrod VL, Miller D, Schultz SK, Wehring H, Arndt S . CYP2D6 polymorphisms and atypical antipsychotic weight gain. Psychiatr Genet 2002; 12: 55–58.

    Article  PubMed  Google Scholar 

  19. Basile VS, Masellis M, McIntyre RS, Meltzer HY, Lieberman JA, Kennedy JL . Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 2001; 62 (Suppl 23): 45–66.

    CAS  PubMed  Google Scholar 

  20. Reynolds GP, Yao Z, Zhang Z . Genetic factors associated with antipsychotic drug-induced weight gain-leptin and 5-HT2C receptor promoter polymorphisms. In: Malhotra AK (ed). Pharmacogenetics in Psychiatry. North Shore-Long Island Jewish Health System: New York, 2003.

    Google Scholar 

  21. Maziade M, Fournier A, Phaneuf D, Cliche D, Fournier JP, Roy MA et al. Chromosome 1q12–q22 linkage results in eastern Quebec families affected by schizophrenia. Am J Med Genet 2002; 114: 51–55.

    Article  PubMed  Google Scholar 

  22. Maziade M, Roy MA, Rouillard E, Bissonnette L, Fournier JP, Roy A et al. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol Psychiatry 2001; 6: 684–693.

    Article  CAS  PubMed  Google Scholar 

  23. Maziade M, Roy M-A, Fournier J-P, Cliche D, Mérette C, Caron C et al. Reliability of best-estimate diagnosis in genetic linkage studies of major psychoses. Results from the Québec pedigrees studies. Am J Psychiatry 1992; 149: 1674–1686.

    Article  CAS  PubMed  Google Scholar 

  24. Maziade M, Roy M-A, Martinez M, Cliche D, Fournier J-P, Garneau Y et al. Negative, psychoticism, and the disorganized dimensions in patients with familial schizophrenia or bipolar disorder: continuity or discontinuity between the major psychoses. Am J Psychiatry 1995; 152: 1458–1463.

    Article  CAS  PubMed  Google Scholar 

  25. Chagnon Y, Roy S, Chagnon M, Lacaille M, Leblanc C, Bouchard C . High-throughput Genotyping Using Infrared Automatic LI-COR DNA Sequencers in the Study of the Obesity and Co-morbidities Genes. LiCor: Lincoln, Nebraska, USA, 1998 p. 5.

    Google Scholar 

  26. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Durner M, Vieland VJ, Greenberg DA . Further evidence for the increased power of LOD scores compared with nonparametric methods. Am J Hum Genet 1999; 64: 281–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abreu PC, Greenberg DA, Hodge SE . Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 1999; 65: 847–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vieland VJ, Greenberg DA, Hodge SE . Adequacy of single-locus approximations for linkage analyses of oligogenic traits: extension to multigenerational pedigree structures. Hum Hered 1993; 43: 329–336.

    Article  CAS  PubMed  Google Scholar 

  30. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  31. Hodge SE, Abreu PC, Greenberg DA . Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet 1997; 60: 217–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rao DC, Province MA . The future of path analysis, segregation analysis, and combined models for genetic dissection of complex traits. Hum Hered 2000; 50: 34–42.

    Article  CAS  PubMed  Google Scholar 

  33. Ott J . Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 1989; 86: 4175–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez M, Khlat M, Leboyer M, Clerget-Darpoux F . Performance of linkage analysis under misclassification error when the genetic model is unknown. Genet Epidemiol 1989; 6: 253–258.

    Article  CAS  PubMed  Google Scholar 

  35. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243–247.

    Article  CAS  PubMed  Google Scholar 

  36. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 2001; 107: 379–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E . Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998; 396: 670–674.

    Article  CAS  PubMed  Google Scholar 

  38. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 2002; 99: 3240–3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 2002; 8: 825–830.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds GP, Zhang Z, Zhang X . Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003; 160: 677–679.

    Article  PubMed  Google Scholar 

  41. Dong GZ, Kameyama K, Rinken A, Haga T . Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J Pharmacol Exp Ther 1995; 274: 378–384.

    CAS  PubMed  Google Scholar 

  42. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 2001; 410: 207–212.

    Article  CAS  PubMed  Google Scholar 

  43. Gutierrez R, Tellez LA, Bermudez-Rattoni F . Blockade of cortical muscarinic but not NMDA receptors prevents a novel taste from becoming familiar. Eur J Neurosci 2003; 17: 1556–1562.

    Article  PubMed  Google Scholar 

  44. Pollmacher T, Schuld A, Kraus T, Haack M, Hinze-Selch D . On the clinical relevance of clozapine-triggered release of cytokines and soluble cytokine-receptors]. Fortschr Neurol Psychiatr 2001; 69 (Suppl 2): S65–S74.

    Article  PubMed  Google Scholar 

  45. Warne JP . Tumour necrosis factor alpha: a key regulator of adipose tIssue mass. J Endocrinol 2003; 177: 351–355.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Louise Bélanger, Vincent Lamothe, and Julie Lemay for their review of the patient files allowing the definition of obesity phenotypes. This work was partially supported by IRSC GR-14501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y C Chagnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chagnon, Y., Mérette, C., Bouchard, R. et al. A genome wide linkage study of obesity as secondary effect of antipsychotics in multigenerational families of eastern Quebec affected by psychoses. Mol Psychiatry 9, 1067–1074 (2004). https://doi.org/10.1038/sj.mp.4001537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001537

Keywords

This article is cited by

Search

Quick links