Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs in adipose tissue: their role in adipogenesis and obesity

Abstract

MicroRNAs (miRNAs) are endogenous small RNAs that posttranscriptionally regulate gene expression and that have been shown to have important roles in numerous disease processes. There is growing evidence for an important role of miRNAs in regulating the pathways in adipose tissue that control a range of processes including adipogenesis, insulin resistance and inflammation. Several high-throughput studies have identified differentially expressed miRNAs in adipose tissue pathology and during adipogenesis and a number of these have now been characterised functionally in terms of their actions and targets. This review will summarise the current literature on miRNAs in adipose tissue, as well as discussing the methodologies used in this area of research and the potential application of miRNAs as biomarkers and as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i-xii: 1–253.

  2. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G . Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005; 280: 9330–9335.

    CAS  PubMed  Google Scholar 

  4. Kim VN, Han J, Siomi MC . Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126–139.

    CAS  PubMed  Google Scholar 

  5. Krol J, Loedige I, Filipowicz W . The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597–610.

    CAS  PubMed  Google Scholar 

  6. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    CAS  PubMed  Google Scholar 

  7. Orom UA, Nielsen FC, Lund AH . MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460–471.

    PubMed  Google Scholar 

  8. Fang Z, Rajewsky N . The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One 2011; 6: e18067.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vasudevan S, Tong Y, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.

    CAS  PubMed  Google Scholar 

  10. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    CAS  PubMed  Google Scholar 

  11. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A . MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011; 43: 854–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    CAS  PubMed  Google Scholar 

  14. Oskowitz AZ, Lu J, Penfornis P, Ylostalo J, McBride J, Flemington EK et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci USA 2008; 105: 18372–18377.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 2008; 105: 2889–2894.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN, Jones SN . Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 2011; 226: 1399–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu P, Vernooy SY, Guo M, Hay BA . The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13: 790–795.

    CAS  PubMed  Google Scholar 

  18. Teleman AA, Maitra S, Cohen SM . Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 2006; 20: 417–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2009; 139: 1096–1108.

    CAS  PubMed  Google Scholar 

  20. Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F . Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011; 19: 888–892.

    CAS  Google Scholar 

  21. Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord 2011; 11: 7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD . Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 2008; 14: 35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Gerstein M, Snyder M . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 2009; 6: 474–476.

    CAS  PubMed  Google Scholar 

  25. Rantalainen M, Herrera BM, Nicholson G, Bowden R, Wills QF, Min JL et al. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS One 2011; 6: e27338.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Tong Y, Rapid Wang S. . and accurate detection of plant miRNAs by liquid northern hybridization. Int J Mol Sci 2010; 11: 3138–3148.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Benes V, Castoldi M . Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010; 50: 244–249.

    CAS  PubMed  Google Scholar 

  28. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS et al. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44: 31–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, Niu G, Chen X, Cao F . Molecular imaging of microRNAs. Eur J Nucl Med Mol Imaging 2011; 38: 1572–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato Y, Sawata SY, Inoue A . A lentiviral vector encoding two fluorescent proteins enables imaging of adenoviral infection via adenovirus-encoded miRNAs in single living cells. J Biochem 2010; 147: 63–71.

    CAS  PubMed  Google Scholar 

  31. Ko MH, Kim S, Hwang do W, Ko HY, Kim YH, Lee DS. . Bioimaging of the unbalanced expression of microRNA9 and microRNA9* during the neuronal differentiation of P19 cells. FEBS J 2008; 275: 2605–2616.

    CAS  PubMed  Google Scholar 

  32. Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX et al. Changes in microRNA profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 2009; 36: 32–39.

    Google Scholar 

  33. Xie H, Lim B, Lodish HF . MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58: 1050–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459: 1010–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sethupathy P, Megraw M, Hatzigeorgiou AG . A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 2006; 3: 881–886.

    CAS  PubMed  Google Scholar 

  37. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG . Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009; 25: 3049–3055.

    CAS  PubMed  Google Scholar 

  38. Witkos TM, Koscianska E, Krzyzosiak WJ . Practical Aspects of microRNA Target Prediction. Curr Mol Med 2011; 11: 93–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. de Ferranti S, Mozaffarian D . The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008; 54: 945–955.

    CAS  PubMed  Google Scholar 

  42. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010; 5: e9022.

    PubMed  PubMed Central  Google Scholar 

  43. Permana PA, Nair S, Lee YH, Luczy-Bachman G, Vozarova De Courten B, Tataranni PA . Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am J Physiol Endocrinol Metab 2004; 286: E958–E962.

    CAS  PubMed  Google Scholar 

  44. Isakson P, Hammarstedt A, Gustafson B, Smith U . Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 2009; 58: 1550–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    CAS  PubMed  Google Scholar 

  46. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ . MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009; 23: 925–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    CAS  PubMed  Google Scholar 

  48. Kajimoto K, Naraba H, Iwai N . MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 2006; 12: 1626–1632.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 2008; 376: 728–732.

    CAS  PubMed  Google Scholar 

  50. Li G, Wu Z, Li X, Ning X, Li Y, Yang G . Biological role of MicroRNA-103 based on expression profile and target genes analysis in pigs. Mol Biol Rep 2011; 38: 4777–4786.

    CAS  PubMed  Google Scholar 

  51. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649–653.

    CAS  PubMed  Google Scholar 

  52. Zaragosi LE, Wdziekonski B . Brigand KL, Villageois P, Mari B, Waldmann R et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011; 12: R64.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 2004; 117: 417–425.

    CAS  PubMed  Google Scholar 

  54. Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG, Scheideler M . MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol 2011; 8: 850–860.

    CAS  PubMed  Google Scholar 

  55. Huang J, Zhao L, Xing L, Chen D . MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28: 357–364.

    PubMed  PubMed Central  Google Scholar 

  56. Mendell JT . miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133: 217–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Prince AM, May JS, Burton GR, Lyle RE, McGehee RE . Proteasomal degradation of retinoblastoma-related p130 during adipocyte differentiation. Biochem Biophys Res Commun 2002; 290: 1066–1071.

    CAS  PubMed  Google Scholar 

  58. Kim YJ, Hwang SJ, Bae YC, Jung JS . MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27: 3093–3102.

    CAS  PubMed  Google Scholar 

  59. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS . MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21. J Cell Physiol 2011; 227: 183–193.

    Google Scholar 

  60. Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL et al. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res 2010; 316: 1681–1691.

    CAS  PubMed  Google Scholar 

  61. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 2005; 54: 3358–3370.

    CAS  PubMed  Google Scholar 

  62. Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castano I et al. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 2010; 18: 2170–2176.

    CAS  Google Scholar 

  63. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 2011; 38: 239–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bost F, Aouadi M, Caron L, Binetruy B . The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87: 51–56.

    CAS  PubMed  Google Scholar 

  65. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z . A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276: 2348–2358.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392: 323–328.

    CAS  PubMed  Google Scholar 

  67. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390: 247–251.

    CAS  PubMed  Google Scholar 

  68. Wang T, Xu Z . miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 2010; 402: 186–189.

    CAS  PubMed  Google Scholar 

  69. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56: 901–911.

    CAS  PubMed  Google Scholar 

  70. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2011; 31: 626–638.

    CAS  PubMed  Google Scholar 

  71. Anand A, Chada K . In vivo modulation of Hmgic reduces obesity. Nat Genet 2000; 24: 377–380.

    CAS  PubMed  Google Scholar 

  72. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147: 81–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Z, Bian C, Zhou H, Huang S, Wang S, Liao L et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 2011; 20: 259–267.

    CAS  PubMed  Google Scholar 

  74. Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 2010; 24: 1978–1987.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    CAS  PubMed  Google Scholar 

  76. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    CAS  PubMed  Google Scholar 

  77. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108: 9232–9237.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328: 1570–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478: 404–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA . Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 2010; 299: E198–E206.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Qi L, Corella D, Sorli JV, Portoles O, Shen H, Coltell O et al. Genetic variation at the perilipin (PLIN) locus is associated with obesity-related phenotypes in White women. Clin Genet 2004; 66: 299–310.

    CAS  PubMed  Google Scholar 

  82. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai CQ, Davalos A et al. The PLIN4 variant rs8887 modulates obesity related phenotypes in humans through creation of a novel miR-522 seed site. PLoS One 2011; 6: e17944.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331–1336.

    CAS  PubMed  Google Scholar 

  84. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 2010; 53: 1099–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. He A, Zhu L, Gupta N, Chang Y, Fang F . Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007; 21: 2785–2794.

    CAS  PubMed  Google Scholar 

  86. Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 Diabetes. BMC Med Genomics 2009; 2: 54.

    PubMed  PubMed Central  Google Scholar 

  87. Heneghan HM, Miller N, Kerin MJ . Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010; 11: 354–361.

    CAS  PubMed  Google Scholar 

  88. Alexander R, Lodish H, Sun L . MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 2011; 15: 623–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Olefsky JM, Glass CK . Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72: 219–246.

    CAS  PubMed  Google Scholar 

  91. Sonkoly E, Pivarcsi A . microRNAs in inflammation. Int Rev Immunol 2009; 28: 535–561.

    CAS  PubMed  Google Scholar 

  92. Jakymiw A, Ikeda K, Fritzler MJ, Reeves WH, Satoh M, Chan EK . Autoimmune targeting of key components of RNA interference. Arthritis Res Ther 2006; 8: R87.

    PubMed  PubMed Central  Google Scholar 

  93. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    CAS  PubMed  Google Scholar 

  94. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    CAS  PubMed  Google Scholar 

  95. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A 2007; 104: 4401–4406.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B . Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol 2009; 218: 444–449.

    CAS  PubMed  Google Scholar 

  97. Townley-Tilson WH, Callis TE, Wang D . MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 2010; 42: 1252–1255.

    CAS  PubMed  Google Scholar 

  98. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM et al. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 2011; 13: 958–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bastida E, Ordinas A, Escolar G, Jamieson GA . Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis. Blood 1984; 64: 177–184.

    CAS  PubMed  Google Scholar 

  100. Mause SF, Weber C . Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107: 1047–1057.

    CAS  PubMed  Google Scholar 

  101. Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 2010; 398: 723–729.

    CAS  PubMed  Google Scholar 

  102. Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011; 19: 395–399.

    CAS  PubMed  Google Scholar 

  103. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT . MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13: 423–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54: 482–490.

    CAS  PubMed  Google Scholar 

  105. Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ . Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 2011; 96: E846–E850.

    CAS  PubMed  Google Scholar 

  106. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    PubMed  Google Scholar 

  107. Castanotto D, Rossi JJ . The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009; 457: 426–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    CAS  PubMed  Google Scholar 

  109. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010; 11: 320.

    PubMed  PubMed Central  Google Scholar 

  110. Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 2009; 385: 492–496.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C Hilton is a clinical training fellow funded by the MRC and Novo Nordisk UK Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Hilton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilton, C., Neville, M. & Karpe, F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes 37, 325–332 (2013). https://doi.org/10.1038/ijo.2012.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.59

Keywords

This article is cited by

Search

Quick links