Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

A high salt diet inhibits obesity and delays puberty in the female rat

Abstract

Background/Objectives:

Processed foods are considered major contributors to the worldwide obesity epidemic. In addition to high sugar and fat contents, processed foods contain large amounts of salt. Owing to the correlations with rising adiposity, salt has recently been proposed to be obesogenic. This study investigated three hypotheses: (i) high salt contributes to weight gain and adiposity in juvenile female rats, (ii) puberty onset would be altered because salt is known to affect neuronal systems involved in activating the reproductive system, and (iii) enhanced adiposity will act synergistically with salt to drive early puberty onset.

Design:

Female weanling rats (post-natal day 21, n=105) were fed a low fat/low salt diet, low fat/high salt diet, high fat/low salt diet or a high salt/high fat diet for 24 days. Metabolic measures, including weight gain, food intake, fecal output, activity and temperature were recorded in subsets of animals.

Results:

Body weight, retroperitoneal and perirenal fat pad weight, and adipocyte size were all lower in animals fed high fat/high salt compared with animals fed high fat alone. Leptin levels were reduced in high fat/high salt fed animals compared with high fat/low salt-fed animals. Daily calorie intake was higher initially but declined with adjusted food intake and was not different among groups after 5 days. Osmolality and corticosterone were not different among groups. Fecal analysis showed excess fat excretion and a decreased digestive efficiency in animals fed high fat/low salt but not in animals fed high fat/high salt. Although respiratory exchange ratio was reduced by high dietary fat or salt, aerobic-resting metabolic rate was not affected by the diet. High salt delayed puberty onset, regardless of dietary fat content.

Conclusions:

Salt delays puberty and prevents the obesogenic effect of a high fat diet. The reduced weight gain evident in high salt-fed animals is not due to differences in food intake or digestive efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2014; 384: 766–781.

    PubMed  PubMed Central  Google Scholar 

  2. Ogden CL, Carroll MD, Flegal KM . Epidemiologic trends in overweight and obesity. Endocrinol Metab Clin North Am 2003; 32: 741–760.

    Article  PubMed  Google Scholar 

  3. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of obesity among adults: United States, 2011–2012. JAMA 2014; 311: 806–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simmonds M, Llewellyn A, Owen CG, Woolacott N . Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev 2016; 17: 95–107.

    Article  CAS  PubMed  Google Scholar 

  5. Dunger DB, Ahmed ML, Ong KK . Effects of obesity on growth and puberty. Best Pract Res Clin Endocrinol Metab 2005; 19: 375–390.

    Article  CAS  PubMed  Google Scholar 

  6. Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol 2014; 32: 3568–3574.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898–918.

    Article  PubMed  Google Scholar 

  8. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR . Energy balance and its components: implications for body weight regulation. Am J Clin Nutr 2012; 95: 989–994.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stenvinkel P . Obesity a disease with many aetiologies disguised in the same oversized phenotype: has the overeating theory failed? Nephrol Dial Transplant 2015; 30: 1656–1664.

    Article  CAS  PubMed  Google Scholar 

  10. Comuzzie AG, Allison DB . The search for human obesity genes. Science 1998; 280: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  11. Popkin BM, Adair LS, Ng SW . Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012; 70: 3–21.

    Article  PubMed  Google Scholar 

  12. Song HJ, Cho YG, Lee H-J . Dietary sodium intake and prevalence of overweight in adults. Metabolism 2013; 62: 703–708.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu H, Pollock NK, Kotak I, Gutin B, Wang X, Bhagatwala J et al. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics 2014; 133: e635–e642.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann IS, Cubeddu LX . Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 2009; 19: 123–128.

    Article  CAS  PubMed  Google Scholar 

  15. Dobrian AD, Schriver SD, Lynch T, Prewitt RL . Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am J Physiol Renal Physiol 2003; 285: F619–F628.

    Article  CAS  PubMed  Google Scholar 

  16. Fonseca-Alaniz MH, Brito LC, Borges-Silva CN, Takada J, Andreotti S, Lima FB . High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity 2007; 15: 2200–2208.

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca-Alaniz MH, Takada J, Andreotti S, de Campos TBF, Campaña AB, Borges-Silva CN et al. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 2008; 16: 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  18. Weidemann BJ, Voong S, Morales-Santiago FI, Kahn MZ, Ni J, Littlejohn NK et al. Dietary sodium suppresses digestive efficiency via the renin–angiotensin system. Sci Rep 2015; 5: 11123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeClercq VC, Goldsby JS, McMurray DN, Chapkin RS . Distinct adipose depots from mice differentially respond to a high-fat, high-salt diet. J Nutr 2016; 146: 1189–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker MS, Li G, Kohorst JJ, Waterland RA . Fetal growth restriction promotes physical inactivity and obesity in female mice. International J Obes 2015; 39: 98–104.

    Article  CAS  Google Scholar 

  21. Kaplowitz PB . Link between body fat and the timing of puberty. Pediatrics 2008; 121: S208–S217.

    Article  PubMed  Google Scholar 

  22. Kaplowitz PB, Slora EJ, Wasserman RC, Pedlow SE, Herman-Giddens ME . Earlier onset of puberty in girls: relation to increased body mass index and race. Pediatrics 2001; 108: 347–353.

    Article  CAS  PubMed  Google Scholar 

  23. Biro FM, Greenspan LC, Galvez MP . Puberty in girls of the 21st century. J Pediatr Adolesc Gynecol 2012; 25: 289–294.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC et al. Onset of breast development in a longitudinal cohort. Pediatrics 2013; 132: 1019–1027.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aksglaede L, Sorensen K, Petersen JH, Skakkebaek NE, Juul A . Recent decline in age at breast development: the Copenhagen puberty study. Pediatrics 2009; 123: e932–e939.

    Article  PubMed  Google Scholar 

  26. Deardorff J, Gonzales NA, Christopher FS, Roosa MW, Millsap RE . Early puberty and adolescent pregnancy: the influence of alcohol use. Pediatrics 2005; 116: 1451–1456.

    Article  PubMed  Google Scholar 

  27. Ge X, Conger RD, Elder GH . Coming of age too early: pubertal influences on girls' vulnerability to psychological distress. Child Dev 1996; 67: 3386–3400.

    Article  CAS  PubMed  Google Scholar 

  28. Williams RM, Ong KK, Dunger DB . Polycystic ovarian syndrome during puberty and adolescence. Mol Cell Endocrinol 2013; 373: 61–67.

    Article  CAS  PubMed  Google Scholar 

  29. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI . Growth patterns and the risk of breast cancer in women. New Engl J Med 2004; 351: 1619–1626.

    Article  CAS  PubMed  Google Scholar 

  30. Herman-Giddens ME . The enigmatic pursuit of puberty in girls. Pediatrics 2013; 132: 1125–1126.

    Article  PubMed  Google Scholar 

  31. Haley GE, Flynn FW . Tachykinin NK3 receptor contribution to systemic release of vasopressin and oxytocin in response to osmotic and hypotensive challenge. Am J Physiol Regul Integr Comp Physiol 2007; 293: R931–R937.

    Article  CAS  PubMed  Google Scholar 

  32. Grachev P, Millar RP, O'Byrne KT . The role of neurokinin B signalling in reproductive neuroendocrinology. Neuroendocrinology 2014; 99: 7–17.

    Article  CAS  PubMed  Google Scholar 

  33. Kennedy GC, Mitra J . Body weight and food intake as initiating factors for puberty in the rat. J Physiol 1963; 166: 408–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li XF, Lin YS, Kinsey-Jones JS, O'Byrne KT . High-fat diet increases LH pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology 2012; 153: 4422–4431.

    Article  CAS  PubMed  Google Scholar 

  35. Porter JP, King SH, Honeycutt AD . Prenatal high-salt diet in the sprague-dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring. Am J Physiol Regul Integr Comp Physiol 2007; 293: R334–R342.

    Article  CAS  PubMed  Google Scholar 

  36. Makita K, Takahashi K, Karara A, Jacobson HR, Falck JR, Capdevila JH . Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Investig 1994; 94: 2414–2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coêlho MS, Passadore MD, Gasparetti AL, Bibancos T, Prada PO, Furukawa LL et al. High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis 2006; 16: 148–155.

    Article  PubMed  Google Scholar 

  38. Lenda DM, Sauls BA, Boegehold MA . Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol Heart Circ Physiol 2000; 279: H7–H14.

    Article  CAS  PubMed  Google Scholar 

  39. Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL . Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 2001; 37: 554–560.

    Article  CAS  PubMed  Google Scholar 

  40. Lusk G . The Elements of the Science of Nutrition, 4th edn. W.B. Saunders: Philadelphia, 1928.

    Google Scholar 

  41. Burnett CML, Grobe JL . Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Mol Metab 2014; 3: 460–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG . Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol Heart Circ Physiol 1982; 243: H941–H947.

    Article  CAS  Google Scholar 

  43. Bernardis LL . Prediction of carcass fat, water and lean body mass from lee's 'nutritive ratio' in rats with hypothalamic obesity. Experientia 1970; 26: 789–790.

    Article  CAS  PubMed  Google Scholar 

  44. Hausman DB, Fine JB, Tagra K, Fleming SS, Martin RJ, DiGirolamo M . Regional fat pad growth and cellularity in obese zucker rats: modulation by caloric restriction. Obes Res 2003; 11: 674–682.

    Article  PubMed  Google Scholar 

  45. Hung C-S, Lee J-K, Yang C-Y, Hsieh H-R, Ma W-Y, Lin M-S et al. Measurement of visceral fat: should we include retroperitoneal fat? PLoS One 2014; 9: e112355.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 2017; 127: 1944–1959.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hariri N, Thibault L . High-fat diet-induced obesity in animal models. Nutr Res Rev 2010; 23: 270–299.

    Article  CAS  PubMed  Google Scholar 

  48. Boyle CN, Rossier MlM, Lutz TA . Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 2011; 104: 20–28.

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 2003; 112: 1821–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bao P, Liu G, Wei Y . Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. Int J Clin Exp Med 2015; 8: 13491–13499.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Engelbregt MJ, van Weissenbruch MM, Popp-Snijders C, Lips P, Delemarre-van de Waal HA . Body mass index, body composition, and leptin at onset of puberty in male and female rats after intrauterine growth retardation and after early postnatal food restriction. Pediatr Res 2001; 50: 474–478.

    Article  CAS  PubMed  Google Scholar 

  52. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4: 597–609.

    Article  CAS  PubMed  Google Scholar 

  53. Lin S, Thomas TC, Storlien LH, Huang XF . Development of high fat diet-induced obesity and leptin resistance in C57Bl/6 J mice. Int J Obes 2000; 24: 639–646.

    Article  CAS  Google Scholar 

  54. Assaad H, Yao K, Tekwe CD, Feng S, Bazer FW, Zhou L et al. Analysis of energy expenditure in diet-induced obese rats. Front Biosci 2014; 19: 967–985.

    Article  Google Scholar 

  55. Widdowson PS, Upton R, Buckingham R, Arch J, Williams G . Inhibition of food response to intracerebroventricular injection of leptin is attenuated in rats with diet-induced obesity. Diabetes 1997; 46: 1782–1785.

    Article  CAS  PubMed  Google Scholar 

  56. McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR . GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 2007; 293: E1746–E1755.

    Article  CAS  PubMed  Google Scholar 

  57. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414–421.

    Article  CAS  PubMed  Google Scholar 

  58. Frisch RE, Hegsted DM, Yoshinaga K . Body weight and food intake at early estrus of rats on a high-fat diet. Proc Natl Acad Sci 1975; 72: 4172–4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramaley JA . Puberty onset in males and females fed a high fat diet. Proc Soc Exp Biol Med 1981; 166: 294–296.

    Article  CAS  PubMed  Google Scholar 

  60. Lie MEK, Overgaard A, Mikkelsen JD . Effect of a postnatal high-fat diet exposure on puberty onset, estrous cycle regularity, and kisspeptin expression in female rats. Reprod Biol 2013; 13: 298–308.

    Article  PubMed  Google Scholar 

  61. Feng LiX, Lin YS, Kinsey-Jones JS, O'Byrne KT . High-fat diet increases lh pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology 153: 4422–4431.

  62. Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H et al. Insulin resistance with enhanced insulin signaling in high-salt diet fed rats. Diabetes 2001; 50: 573–583.

    Article  CAS  PubMed  Google Scholar 

  63. Nurkiewicz TR, Boegehold MA . High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1550–R1556.

    Article  CAS  PubMed  Google Scholar 

  64. Lasheen NN . Pancreatic functions in high salt fed female rats. Physiol Rep 2015; 3: e12443.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L et al. High-salt diet during pregnancy and angiotensin-related cardiac changes. J Hypertens 2010; 28: 1290–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pitynski D, Flynn FW, Skinner DC . Does salt have a permissive role in the induction of puberty? Med Hypotheses 2015; 85: 463–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2015; 308: R559–R568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cates PS, Forsling ML, O’Byrne KT . Stress-induced suppression of pulsatile luteinising hormone release in the female rat: role of vasopressin. J Neuroendocrinol 1999; 11: 677–683.

    Article  CAS  PubMed  Google Scholar 

  69. Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM et al. Stimulates GnRH release in the male monkey (Macaca mulatta and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology 151: 4494–4503.

  70. Jin C, MacDonell R, Speed J, Pollock D . Synergy of high salt and high fat diet on kidney injury and adiposity. FASEB J 2014; 28 (1 Suppl): 1086–1.

    Google Scholar 

  71. Okuda M, Asakura K, Sasaki S, Shinozaki K . Twenty-four-hour urinary sodium and potassium excretion and associated factors in Japanese secondary school students. Hypertens Res 2016; 39: 524–529.

    Article  CAS  PubMed  Google Scholar 

  72. Yoshiike N, Miyoshi M . Epidemiological aspects of overweight and obesity in Japan—international comparisons. Japan J Clin Med 2013; 71: 207–216.

    Google Scholar 

  73. Kanazawa M, Yoshiike N, Osaka T, Numba Y, Zimmet P, Inoue S . Criteria and classification of obesity in japan and Asia-Oceania. Asia Pac J Clin Nutr 2002; 11: S732–S737.

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by National Institutes of Health grants P30 GM103398 and NS57823 awarded to FWF and an Academic Scholarship from the Society for Reproduction and Fertility, UK awarded to DCS. An Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #2P20GM103432 provided student support for MR, MS, RS and TF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Skinner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitynski-Miller, D., Ross, M., Schmill, M. et al. A high salt diet inhibits obesity and delays puberty in the female rat. Int J Obes 41, 1685–1692 (2017). https://doi.org/10.1038/ijo.2017.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.154

This article is cited by

Search

Quick links