Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib

Abstract

Our prior study in multiple myeloma (MM) patients showed increased numbers of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM), which both contribute to immune dysfunction as well as promote tumor cell growth, survival and drug resistance. Here we show that a novel Toll-like receptor (TLR-9) agonist C792 restores the ability of MM patient-pDCs to stimulate T-cell proliferation. Coculture of pDCs with MM cells induces MM cell growth; and importantly, C792 inhibits pDC-induced MM cell growth and triggers apoptosis. In contrast, treatment of either MM cells or pDCs alone with C792 does not affect the viability of either cell type. In agreement with our in vitro data, C792 inhibits pDC-induced MM cell growth in vivo in a murine xenograft model of human MM. Mechanistic studies show that C792 triggers maturation of pDCs, enhances interferon-α and interferon-λ secretion and activates TLR-9/MyD88 signaling axis. Finally, C792 enhances the anti-MM activity of bortezomib, lenalidomide, SAHA or melphalan. Collectively, our preclinical studies provide the basis for clinical trials of C792, either alone or in combination, to both improve immune function and overcome drug resistance in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson KC . The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol 2012; 30: 445–452.

    Article  CAS  PubMed  Google Scholar 

  2. Dalton W, Anderson KC . Synopsis of a roundtable on validating novel therapeutics for multiple myeloma. Clin Cancer Res 2006; 12: 6603–6610.

    Article  PubMed  Google Scholar 

  3. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012; 22: 345–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roodman GD . Novel targets for myeloma bone disease. Expert Opin Ther Targets 2008; 12: 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  5. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al. Multiple myeloma cell adhesion induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87: 1104–1112.

    CAS  PubMed  Google Scholar 

  6. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7: 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  7. Steinman RM, Cohn ZA . Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137: 1142–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinman RM . Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30: 1–22.

    Article  CAS  PubMed  Google Scholar 

  9. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006; 203: 1859–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKenna K, Beignon AS, Bhardwaj N . Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 2005; 79: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ribatti D, Nico B, Vacca A . Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 2006; 25: 4257–4266.

    Article  CAS  PubMed  Google Scholar 

  12. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  13. O’Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994; 82: 487–493.

    PubMed  PubMed Central  Google Scholar 

  14. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ . The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185: 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V . Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29: 163–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dzionek A, Inagaki Y, Okawa K, Nagafune J, Röck J, Sohma Y et al. Plasmacytoid dendritic cells: from specific surface markers to specific cellular functions. Hum Immunol 2002; 63: 1133–1148.

    Article  CAS  PubMed  Google Scholar 

  17. Gilliet M, Cao W, Liu YJ . Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008; 8: 594–606.

    Article  CAS  PubMed  Google Scholar 

  18. Krieg AM . TLR9 and DNA ‘feel’ RAGE. Nat Immunol 2007; 8: 475–477.

    Article  CAS  PubMed  Google Scholar 

  19. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    Article  CAS  PubMed  Google Scholar 

  20. Brimnes MK, Svane IM, Johnsen HE . Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma. Clin Exp Immunol 2006; 144: 76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002; 100: 230–237.

    CAS  PubMed  Google Scholar 

  22. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi T, Hideshima T, Akiyama M, Raje N, Richardson P, Chauhan D et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood 2003; 102: 1435–1442.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia De Vinuesa C, Gulbranson-Judge A, Khan M, O’Leary P, Cascalho M, Wabl M et al. Dendritic cells associated with plasmablast survival. Eur J Immuno 1999; 29: 3712–3721.

    Article  CAS  Google Scholar 

  25. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J . Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19: 225–234.

    Article  CAS  PubMed  Google Scholar 

  26. Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 2004; 103: 3058–3064.

    Article  CAS  PubMed  Google Scholar 

  27. Tabera S, Perez-Simon JA, Diez-Campelo M, Sánchez-Abarca LI, Blanco B, López A et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 2008; 93: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  28. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009; 16: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marshall JD, Fearon KL, Higgins D, Hessel EM, Kanzler H, Abbate C et al. Superior activity of the type C class of ISS in vitro and in vivo across multiple species. DNA Cell Biol 2005; 24: 63–72.

    Article  CAS  PubMed  Google Scholar 

  30. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 2001; 194: 1823–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  32. Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol 2004; 173: 4433–4442.

    Article  CAS  PubMed  Google Scholar 

  33. Vollmer J . Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther 2005; 5: 673–682.

    Article  CAS  PubMed  Google Scholar 

  34. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202: 1131–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu C, Lou Y, Lizee G, Qin H, Liu S, Rabinovich B et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 2008; 118: 1165–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandel MH, Dadabayev AR, Menon AG, Morreau H, Melief CJ, Offringa R et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 2005; 11: 2576–2582.

    Article  CAS  PubMed  Google Scholar 

  37. Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 2003; 63: 6478–6487.

    CAS  PubMed  Google Scholar 

  38. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001; 31: 3026–3037.

    Article  CAS  PubMed  Google Scholar 

  39. Martinson JA, Tenorio AR, Montoya CJ, Al-Harthi L, Gichinga CN, Krieg AM et al. Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology 2006; 120: 526–535.

    Article  Google Scholar 

  40. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 2003; 73: 781–792.

    Article  CAS  PubMed  Google Scholar 

  41. Marshall JD, Heeke DS, Abbate C, Yee P, Van Nest G . Induction of interferon-gamma from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-dendritic-cell-produced interferon-alpha and tumour necrosis factor-alpha. Immunology 2006; 117: 38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin Z, Dai J, Deng J, Sheikh F, Natalia M, Shih T et al. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. J Immunol 2012; 189: 2735–2745.

    Article  CAS  PubMed  Google Scholar 

  43. Donnelly RP, Kotenko SV . Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res 2010; 30: 555–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang X, Yang Y . Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets 2010; 14: 787–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warner N, Núñez G . MyD88: a critical adaptor protein in innate immunity signal transduction. J Immunol 2013; 190: 3–4.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenberg SA (ed). Principles and Practice of the Biologic Therapy of Cancer 3rd edn. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000.

    Google Scholar 

  47. Talpaz M, Ravandi F, Kurzrock R, Estron Z, Kantarjian HM . Interferon-α and -β: clinical applications. Section10.1: leukemias, lymphomas, and multiple myeloma. In: Rosenberg SA (ed) Principles and Practice of the Biologic Therapy of Cancer 3rd edn. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp 217–219.

    Google Scholar 

  48. Mellstedt H, Aher A, Bjorkholm M, Holm G, Johansson B, Strander H . Interferon therapy in myelomatosis. Lancet 1979; 1: 245–247.

    Article  CAS  PubMed  Google Scholar 

  49. Balzarolo M, Karrich JJ, Engels S, Blom B, Medema JP, Wolkers MC . The transcriptional regulator NAB2 reveals a two-step induction of TRAIL in activated plasmacytoid DCs. Eur J Immunol 2012; 42: 3019–3027.

    Article  CAS  PubMed  Google Scholar 

  50. Kalb ML, Glaser A, Stary G, Koszik F, Stingl G . TRAIL+ human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of Imiquimod- and IFN-α-mediated antitumor reactivity. J Immunol 2012; 188: 1583–1591.

    Article  CAS  PubMed  Google Scholar 

  51. Surget S, Chiron D, Gomez-Bougie P . Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells. Cancer Res 2012; 72: 4562–4573.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Q, Hossain DM, Nechaev S, Kozlowska A, Zhang W, Liu Y et al. TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 2013; 121: 1304–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dalton WS, Durie BG, Alberts DS, Gerlach JH, Cress AE . Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res 1986; 46: 5125–5130.

    CAS  PubMed  Google Scholar 

  54. Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T et al. Characterization of the MM.1S human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 2003; 31: 271–282.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by National Institutes of Health Specialized Programs of Research Excellence (SPORE) grants P50100707, PO1-CA078378, and RO1 CA050947. KCA is an American Cancer Society Clinical Research Professor.

Author contributions

DC designed research, analyzed data and wrote the manuscript; AR performed the experiments, analyzed data and wrote the manuscript; ZT and DSD helped in flow cytometry; RLC provided technical advice, analyzed data and reviewed the manuscript; PR provided clinical samples; and KCA analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Chauhan or K C Anderson.

Ethics declarations

Competing interests

RLC is an employee of Dynavax Technologies. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, A., Tian, Z., Das, D. et al. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib. Leukemia 28, 1716–1724 (2014). https://doi.org/10.1038/leu.2014.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.46

Keywords

This article is cited by

Search

Quick links