Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA catalysis through compartmentalization

Subjects

Abstract

RNA performs important cellular functions in contemporary life forms. Its ability to act both as a catalyst and a storage mechanism for genetic information is also an important part of the RNA world hypothesis. Compartmentalization within modern cells allows the local concentration of RNA to be controlled and it has been suggested that this was also important in early life forms. Here, we mimic intracellular compartmentalization and macromolecular crowding by partitioning RNA in an aqueous two-phase system (ATPS). We show that the concentration of RNA is enriched by up to 3,000-fold in the dextran-rich phase of a polyethylene glycol/dextran ATPS and demonstrate that this can lead to approximately 70-fold increase in the rate of ribozyme cleavage. This rate enhancement can be tuned by the relative volumes of the two phases in the ATPS. Our observations support the importance of compartmentalization in the attainment of function in an RNA World as well as in modern biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hammerhead ribozyme and its rate acceleration through compartmentalization.
Figure 2: Length dependence of RNA partitioning.
Figure 3: Kinetics for hammerhead ribozymes in the kcat/KM regime.
Figure 4: Kinetics for HHL in ATPS with varying phase volume ratios.

Similar content being viewed by others

References

  1. Deeds, E. J., Ashenberg, O., Gerardin, J. & Shakhnovich, E. I. Robust protein–protein interactions in crowded cellular environments. Proc. Natl Acad. Sci. USA 104, 14952–14957 (2007).

    Article  CAS  Google Scholar 

  2. Matera, G. & Shpargel, K. Pumping RNA. Nuclear bodybuilding along the RNA pipeline. Curr. Opin. Cell Biol. 18, 317–324 (2006).

    Article  CAS  Google Scholar 

  3. Atkins, J. F., Gesteland, R. F. & Cech, T. R. RNA Worlds: From Life's Origins to Diversity in Gene Regulation (Cold Spring Harbor Press, 2010).

    Google Scholar 

  4. Albertsson, P. Å. Partition of Cell Particles and Macromolecules (Wiley, 1960).

    Google Scholar 

  5. Zaslavsky, B. Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications (Marcel Dekker, 1995).

    Google Scholar 

  6. Hatti-Kaul, R. Aqueous Two-Phase Systems: Methods and Protocols (Humana Press, 2000).

    Book  Google Scholar 

  7. Albertsson, P. Å . & Tjerneld, F. Phase diagrams. Methods Enzymol. 228, 3–13 (1994).

    Article  CAS  Google Scholar 

  8. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    Article  CAS  Google Scholar 

  9. Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  Google Scholar 

  10. Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).

    Article  CAS  Google Scholar 

  11. Diamond, A. D. & Hsu, J. T. Fundamental studies of biomolecule partitioning in aqueous two-phase systems. Biotechnol. Bioeng. 34, 1000–1014 (1989).

    Article  CAS  Google Scholar 

  12. Stage-Zimmermann, T. K. & Uhlenbeck, O. C. Hammerhead ribozyme kinetics. RNA 4, 875–889 (1998).

    Article  CAS  Google Scholar 

  13. Scott, W. G., Finch, J. T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  14. Martick, M. & Scott, W. G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  Google Scholar 

  15. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S. D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct. Mol. Biol. 10, 708–712 (2003).

    Article  CAS  Google Scholar 

  16. Lambert, D., Heckman, J. E. & Burke, J. M. Three conserved guanosines approach the reaction site in native and minimal hammerhead ribozymes. Biochemistry 45, 7140–7147 (2006).

    Article  CAS  Google Scholar 

  17. Osborne, E. M., Schaak, J. E. & Derose, V. J. Characterization of a native hammerhead ribozyme derived from schistosomes. RNA 11, 187–196 (2005).

    Article  CAS  Google Scholar 

  18. Laing, L. G. & Draper, D. E. Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J. Mol. Biol. 237, 560–576 (1994).

    Article  CAS  Google Scholar 

  19. Hertel, K. J., Herschlag, D. & Uhlenbeck, O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).

    Article  CAS  Google Scholar 

  20. Hertel, K. J., Hershclag, D. & Uhlenbeck, O. C. Specificity of hammerhead ribozyme cleavage. EMBO J. 15, 3751–3757 (1996).

    Article  CAS  Google Scholar 

  21. Long, M. S. & Keating, C. D. Nanoparticle conjugation increases protein partitioning in aqueous two-phase systems. Anal. Chem. 78, 379–386 (2006).

    Article  CAS  Google Scholar 

  22. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. Molecular Biology of the Cell 3rd edn (Garland Publishing, 1994).

    Google Scholar 

  23. Feig, A. L. & Uhlenbeck, O. The Role of Metal Ions in RNA Biochemistry. In The RNA World (Cold Spring Harbor Press, 1999).

    Google Scholar 

  24. Herschlag, D. & Cech, T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. Biochemistry 29, 10172–10180 (1990).

    Article  CAS  Google Scholar 

  25. Nakano, S., Karimata, H. T., Kitagawa, Y. & Sugimoto, N. Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J. Am. Chem. Soc. 131, 16881–16888 (2009).

    Article  CAS  Google Scholar 

  26. Keighron, J. D. & Keating, C. D. Towards a Minimal Cytoplasm. In The Minimal Cell (Springer, 2011).

    Google Scholar 

  27. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  28. Joyce, G. F. Molecular evolution: booting up life. Nature 420, 278–279 (2002).

    Article  CAS  Google Scholar 

  29. Jencks, W. P. Catalysis in Chemistry and Enzymology (Dover, 1969).

    Google Scholar 

  30. Levy, M., Griswold, K. E. & Ellington, A. D. Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization. RNA 11, 1555–1562 (2005).

    Article  CAS  Google Scholar 

  31. Ghadessy, F. J., Ong, J. L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl Acad. Sci. USA 98, 4552–4557 (2001).

    Article  CAS  Google Scholar 

  32. Griffiths, A. D. & Tawfik, D. S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 22, 24–35 (2003).

    Article  CAS  Google Scholar 

  33. Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005).

    Article  CAS  Google Scholar 

  34. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  35. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nature Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  Google Scholar 

  36. Lewis, J. D. & Tollervey, D. Like attracts like: getting RNA processing together in the nucleus. Science 288, 1385–1389 (2000).

    Article  CAS  Google Scholar 

  37. Brangwynne, C. P. Soft active aggregates:mechanics, dynamics and self-assembly of liquid-like intracellular protein bodies. Soft Matter 7, 3052–3059 (2011).

    Article  CAS  Google Scholar 

  38. Chubb, J. R. & Bickmore, W. A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403–406 (2003).

    Article  CAS  Google Scholar 

  39. Hancock, R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol. 146, 281–290 (2004).

    Article  CAS  Google Scholar 

  40. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    Article  CAS  Google Scholar 

  41. Woese, C. R. On the evolution of the genetic code. Proc. Natl Acad. Sci. USA 54, 1546–1552 (1965).

    Article  CAS  Google Scholar 

  42. Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).

    Article  CAS  Google Scholar 

  43. Crick, F. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  44. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  45. Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. http://dx.doi.org/10.1021/ar200294y.

  46. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chem. 3, 720–724 (2011).

    Article  CAS  Google Scholar 

  47. Oparin, A. I., Serebrovskaya, K. B. & Auerman, T. L. Synthesizing action of polynucleotidephosphorylase of Micrococcus lysodeikticus in solution and in coacervate systems. Biokhimiya 26, 499–504 (1961).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (grant CHE-0750196), co-funded by the MCB division. The authors thank members of the Bevilacqua and Keating laboratories for helpful comments on the manuscript. The authors also thank D. Dewey and M. Andes-Koback for help with fluorescence microscopy.

Author information

Authors and Affiliations

Authors

Contributions

C.A.S. and R.C.M. performed the experiments. All authors contributed ideas, discussed the results, and wrote the manuscript.

Corresponding authors

Correspondence to Christine D. Keating or Philip C. Bevilacqua.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strulson, C., Molden, R., Keating, C. et al. RNA catalysis through compartmentalization. Nature Chem 4, 941–946 (2012). https://doi.org/10.1038/nchem.1466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing