Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

Subjects

Abstract

Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of chemoselective ligation and the mechanistic aspects of NCL.
Figure 2: Fmoc-SPPS of peptide thioesters and total chemical synthesis of HA-H2B-Ub(K34).
Figure 3: Preparation of peptide thioester applying N→S acyl transfer strategies and their application in protein synthesis.
Figure 4: Principle of NCL coupled with desulfurization with the mechanistic aspects and application of desulfurization in protein synthesis.
Figure 5: Illustration of convergent and one-pot approaches and application of convergent approach in the total chemical synthesis of HIV dimer.
Figure 6: SPCL approach and its application in protein synthesis.
Figure 7: Promising peptide ligation reactions.

Similar content being viewed by others

References

  1. Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kent, S. B. Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57, 957–989 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Hackenberger, C. P. & Schwarzer, D. Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 47, 10030–10074 (2008).

    Article  CAS  Google Scholar 

  5. Siman, P. & Brik, A. Chemical and semisynthesis of posttranslationally modified proteins. Org. Biomol. Chem. 10, 5684–5697 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779–14784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yeates, T. O. & Kent, S. B. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Muir, T. W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Durek, T. & Becker, C. F. W. Protein semi-synthesis: new proteins for functional and structural studies. Biomol. Eng. 22, 153–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, E. C. & Kent, S. B. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640–6646 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bang, D., Pentelute, B. L. & Kent, S. B. H. Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 45, 3985–3988 (2006).

    Article  CAS  Google Scholar 

  12. Schnolzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S. B. H. In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int. J. Pept. Res. Ther. 13, 31–44 (2007).

    Article  CAS  Google Scholar 

  13. Kang, J. & Macmillan, D. Peptide and protein thioester synthesis via N→S acyl transfer. Org. Biomol. Chem. 8, 1993–2002 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, J. S., Tang, S., Huang, Y. C. & Liu, L. Development of new thioester equivalents for protein chemical synthesis. Acc. Chem. Res. 46, 2475–2484 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Blanco-Canosa, J. B. & Dawson, P. E. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 47, 6851–6855 (2008).

    Article  CAS  Google Scholar 

  16. Mahto, S. K., Howard, C. J., Shimko, J. C. & Ottesen, J. J. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12, 2488–2494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blanco-Canosa, J. B., Nardone, B., Albericio, F. & Dawson, P. E. Chemical protein synthesis using a second generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 137, 7197–7209 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, P., Layfield, R., Landon, M., Mayer, R. J. & Ramage, R. Transfer active ester condensation: a novel technique for peptide segment coupling. Tetrahedron Lett. 39, 8711–8714 (1998).

    Article  CAS  Google Scholar 

  19. Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).

    Article  CAS  Google Scholar 

  20. Siman, P., Karthikeyan, S. V., Nikolov, M., Fischle, W. & Brik, A. Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew. Chem. Int. Ed. 52, 8059–8063 (2013).

    Article  CAS  Google Scholar 

  21. Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang, G. M., Wang, J. X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 51, 10347–10350 (2012).

    Article  CAS  Google Scholar 

  23. Hemantha, H. P. et al. Nonenzymatic polyubiquitination of expressed proteins. J. Am. Chem. Soc. 136, 2665–2673 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Shema-Yaacoby, E. et al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep. 4, 601–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ackrill, T., Anderson, D. W. & Macmillan, D. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N→S acyl shift. Biopolymers 94, 495–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Raibaut, L., Ollivier, N. & Melnyk, O. Sequential native peptide ligation strategies for total chemical protein synthesis. Chem. Soc. Rev. 41, 7001–7015 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuda, S., Shigenaga, A., Bando, K. & Otaka, A. N→S Acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives. Org. Lett. 11, 823–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hojo, H., Onuma, Y., Akimoto, Y., Nakahara, Y. & Nakahara, Y. N-alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett. 48, 25–28 (2007).

    Article  CAS  Google Scholar 

  29. Erlich, L. A., Kumar, K. S. A., Haj-Yahya, M., Dawson, P. E. & Brik, A. N-Methylcysteine-mediated total chemical synthesis of ubiquitin thioester. Org. Biomol. Chem. 8, 2392–2396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sato, K. et al. Chemical synthesis of biologically active monoglycosylated GM2-activator protein analogue using N-sulfanylethylanilide peptide. Angew. Chem. Int. Ed. 52, 7855–7859 (2013).

    Article  CAS  Google Scholar 

  31. Kumar, K. S. et al. Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew. Chem. Int. Ed. 50, 6137–6141 (2011).

    Article  CAS  Google Scholar 

  32. Bavikar, S. N. et al. Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Angew. Chem. Int. Ed. 51, 758–763 (2012).

    Article  CAS  Google Scholar 

  33. Ollivier, N., Dheur, J., Mhidia, R., Blanpain, A. & Melnyk, O. Bis(2-sulfanylethyl)amino native peptide ligation. Org. Lett. 12, 5238–5241 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hou, W., Zhang, X. H., Li, F. P. & Liu, C. F. Peptidyl N,N-bis(2-mercaptoethyl)-amides as thioester precursors for native chemical ligation. Org. Lett. 13, 386–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Boll, E. et al. A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chem. Sci. 5, 2017–2022 (2014).

    Article  CAS  Google Scholar 

  36. Low, D. W., Hill, M. G., Carrasco, M. R., Kent, S. B. H. & Botti, P. Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary. Proc. Natl Acad. Sci. USA 98, 6554–6559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Offer, J., Boddy, C. N. C. & Dawson, P. E. Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 124, 4642–4646 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Dawson, P. E. Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr. J. Chem. 51, 862–867 (2011).

    Article  CAS  Google Scholar 

  40. Malins, L. R. & Payne, R. J. Synthetic amino acids for applications in peptide ligation–desulfurization chemistry. Aust. J. Chem. 68, 521–537 (2015).

    Article  CAS  Google Scholar 

  41. Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    Article  CAS  Google Scholar 

  42. Fauvet, B., Butterfield, S. M., Fuks, J., Brik, A. & Lashuel, H. A. One-pot total chemical synthesis of human α-synuclein. Chem. Commun. 49, 9254–9256 (2013).

    Article  CAS  Google Scholar 

  43. Li, J. F. et al. Chemistry as an expanding resource in protein science: fully synthetic and fully active human parathyroid hormone-related protein (1–141). Angew. Chem. Int. Ed. 51, 12263–12267 (2012).

    Article  CAS  Google Scholar 

  44. Creech, G. S., Paresi, C., Li, Y. M. & Danishefsky, S. J. Chemical synthesis of the ATAD2 bromodomain. Proc. Natl Acad. Sci. USA 111, 2891–2896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakamoto, I. et al. Chemical synthesis of homogeneous human glycosyl-interferon-β that exhibits potent antitumor activity in vivo. J. Am. Chem. Soc. 134, 5428–5431 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, S. H., Pentelute, B. L. & Kent, S. B. H. Convergent chemical synthesis of [lysine24, 38, 83] human erythropoietin. Angew. Chem. Int. Ed. 51, 993–999 (2012).

    Article  CAS  Google Scholar 

  47. Wang, P. et al. At last: erythropoietin as a single glycoform. Angew. Chem. Int. Ed. 51, 11576–11584 (2012).

    Article  CAS  Google Scholar 

  48. Murakami, M., Okamoto, R., Izumi, M. & Kajihara, Y. Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew. Chem. Int. Ed. 51, 3567–3572 (2012).

    Article  CAS  Google Scholar 

  49. Wilson, R. M., Dong, S. W., Wang, P. & Danishefsky, S. J. The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew. Chem. Int. Ed. 52, 7646–7665 (2013).

    Article  CAS  Google Scholar 

  50. Wang, P. et al. Erythropoietin derived by chemical synthesis. Science 342, 1357–1360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kochendoerfer, G. G. et al. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299, 884–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Kumar, K. S. A., Haj-Yahya, M., Olschewski, D., Lashuel, H. A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 48, 8090–8094 (2009).

    Article  CAS  Google Scholar 

  53. Spasser, L. & Brik, A. Chemistry and biology of the ubiquitin signal. Angew. Chem. Int. Ed. 51, 6840–6862 (2012).

    Article  CAS  Google Scholar 

  54. Hendrickson, J. B. Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439–5450 (1977).

    Article  CAS  Google Scholar 

  55. Wang, J. X. et al. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis. Angew. Chem. Int. Ed. 54, 2194–2198 (2015).

    Article  CAS  Google Scholar 

  56. Bang, D. & Kent, S. B. H. A one-pot total synthesis of crambin. Angew. Chem. Int. Ed. 43, 2534–2538 (2004).

    Article  CAS  Google Scholar 

  57. Torbeev, V. Y. & Kent, S. B. H. Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew. Chem. Int. Ed. 46, 1667–1670 (2007).

    Article  CAS  Google Scholar 

  58. Torbeev, V. Y. et al. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc. Natl Acad. Sci. USA 108, 20982–20987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Torbeev, V. Y. & Kent, S. B. H. Ionization state of the catalytic dyad Asp25/25′ in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis. Org. Biomol. Chem. 10, 5887–5891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seenaiah, M., Jbara, M., Mali, S. M. & Brik, A. Convergent versus sequential protein synthesis: the case of ubiquitinated and glycosylated H2B. Angew. Chem. Int. Ed. 54, 12374–12378 (2015).

    Article  CAS  Google Scholar 

  61. Rauk, A., Yu, D. & Armstrong, D. A. Oxidative damage to and by cysteine in proteins: an ab initio study of the radical structures, C–H, S–H, and C–C bond dissociation energies, and transition structures for H abstraction by thiyl radicals. J. Am. Chem. Soc. 120, 8848–8855 (1998).

    Article  CAS  Google Scholar 

  62. Siman, P. et al. Chemical synthesis and expression of the HIV-1 Rev protein. Chembiochem 12, 1097–1104 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Moyal, T., Hemantha, H. P., Siman, P., Refua, M. & Brik, A. Highly efficient one-pot ligation and desulfurization. Chem. Sci. 4, 2496–2501 (2013).

    Article  CAS  Google Scholar 

  64. Thompson, R. E. et al. Trifluoroethanethiol: an additive for efficient one-pot peptide ligation-desulfurization chemistry. J. Am. Chem. Soc. 136, 8161–8164 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Schmalisch, J. & Seitz, O. Acceleration of thiol additive-free native chemical ligation by intramolecular S→S acyl transfer. Chem. Commun. 51, 7554–7557 (2015).

    Article  CAS  Google Scholar 

  66. Reimann, O., Smet-Nocca, C. & Hackenberger, C. P. Traceless purification and desulfurization of tau protein ligation products. Angew. Chem. Int. Ed. 54, 306–310 (2015).

    Article  CAS  Google Scholar 

  67. Bondalapati, S. et al. Chemical synthesis of phosphorylated ubiquitin and diubiquitin exposes positional sensitivities of E1-E2 enzymes and deubiquitinases. Chem. Eur. J. 21, 7360–7364 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Canne, L. E. et al. Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720–8727 (1999).

    Article  CAS  Google Scholar 

  69. Brik, A., Keinan, E. & Dawson, P. E. Protein synthesis by solid-phase chemical ligation using a safety catch linker. J. Org. Chem. 65, 3829–3835 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Aucagne, V. et al. Towards the simplification of protein synthesis: iterative solid-supported ligations with concomitant purifications. Angew. Chem. Int. Ed. 51, 11320–11324 (2012).

    Article  CAS  Google Scholar 

  71. Raibaut, L. et al. Highly efficient solid phase synthesis of large polypeptides by iterative ligations of bis(2-sulfanylethyl)amido (SEA) peptide segments. Chem. Sci. 4, 4061–4066 (2013).

    Article  CAS  Google Scholar 

  72. Jbara, M., Seenaiah, M. & Brik, A. Solid phase chemical ligation employing a rink amide linker for the synthesis of histone H2B protein. Chem. Commun. 50, 12534–12537 (2014).

    Article  CAS  Google Scholar 

  73. Tornoe, C. W. Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen, U. T. T. et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nature Methods 11, 834–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ryadnov, M. G. & Woolfson, D. N. Self-assembled templates for polypeptide synthesis. J. Am. Chem. Soc. 129, 14074–14081 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Moyal, T., Bavikar, S. N., Karthikeyan, S. V., Hemantha, H. P. & Brik, A. Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions. J. Am. Chem. Soc. 134, 16085–16092 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Wilkinson, B. L. et al. Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins. Angew. Chem. Int. Ed. 51, 3606–3610 (2012).

    Article  CAS  Google Scholar 

  78. Tachibana, Y. et al. Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew. Chem. Int. Ed. 43, 856–862 (2004).

    Article  CAS  Google Scholar 

  79. Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Nilsson, B. L., Kiessling, L. L. & Raines, R. T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Saito, F., Noda, H. & Bode, J. W. Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water. ACS Chem. Biol. 10, 1026–1033 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Y. F., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. C. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bode, J. W., Fox, R. M. & Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew. Chem. Int. Ed. 45, 1248–1252 (2006).

    Article  CAS  Google Scholar 

  84. Wucherpfennig, T. G., Pattabiraman, V. R., Limberg, F. R., Ruiz-Rodriguez, J. & Bode, J. W. Traceless preparation of C-terminal α-ketoacids for chemical protein synthesis by α-ketoacid-hydroxylamine ligation: synthesis of SUMO2/3. Angew. Chem. Int. Ed. 53, 12248–12252 (2014).

    Article  CAS  Google Scholar 

  85. Pusterla, I. & Bode, J. W. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nature Chem. 7, 668–672 (2015).

    Article  CAS  Google Scholar 

  86. Noda, H., Eros, G. & Bode, J. W. Rapid ligations with equimolar reactants in water with the potassium acyltrifluoroborate (KAT) amide formation. J. Am. Chem. Soc. 136, 5611–5614 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Ohayon, S., Spasser, L., Aharoni, A. & Brik, A. Targeting deubiquitinases enabled by chemical synthesis of proteins. J. Am. Chem. Soc. 134, 3281–3289 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Wintermann, F. & Engelbrecht, S. Reconstitution of the Catalytic Core of F-ATPase (αβ)3γ from Escherichia coli using chemically synthesized subunit γ. Angew. Chem. Int. Ed. 52, 1309–1313 (2013).

    Article  CAS  Google Scholar 

  89. Simon, M. D. et al. Rapid flow-based peptide synthesis. ChemBioChem 15, 713–720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Dheur, J., Ollivier, N. & Melnyk, O. Synthesis of thiazolidine thioester peptides and acceleration of native chemical ligation. Org. Lett. 13, 1560–1563 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Durek, T. & Alewood, P. F. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew. Chem. Int. Ed. 50, 12042–12045 (2011).

    Article  CAS  Google Scholar 

  93. Metanis, N., Keinan, E. & Dawson, P. E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 49, 7049–7053 (2010).

    Article  CAS  Google Scholar 

  94. Mitchell, N. J. et al. Rapid additive-free selenocystine–selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011–14014 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Malins, L. R., Mitchell, N. J., McGowan, S. & Payne, R. J. Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew. Chem. Int. Ed. 54, 12716–12721 (2015).

    Article  CAS  Google Scholar 

  96. Dery, S. et al. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci 6, 6207–6212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lahiri, S., Brehs, M., Olschewski, D. & Becker, C. F. W. Total chemical synthesis of an integral membrane enzyme: diacylglycerol kinase from Escherichia coli. Angew. Chem. Int. Ed. 50, 3988–3992 (2011).

    Article  CAS  Google Scholar 

  98. Zheng, J. S. et al. Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J. Am. Chem. Soc. 136, 3695–3704 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, E. C. B. et al. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease. J. Am. Chem. Soc. 129, 11480–11490 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Asahina, Y. et al. Chemical synthesis of O-glycosylated human interleukin-2 by the reverse polarity protection strategy. Angew. Chem. Int. Ed. 54, 8226–8230 (2015).

    Article  CAS  Google Scholar 

  101. Rabideau, A. E., Liao, X. L. & Pentelute, B. L. Delivery of mirror image polypeptides into cells. Chem. Sci. 6, 648–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. David, Y., Vila-Perello, M., Verma, S. & Muir, T. W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nature Chem. 7, 394–402 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Israel Science Foundation for financial support (A.B.). S.B. thanks the Israel Council of Higher Education for a fellowship under the PBC program. A.B. is a Neubauer Professor and a Taub Fellow supported by the Taub Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Brik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nature Chem 8, 407–418 (2016). https://doi.org/10.1038/nchem.2476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing