Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

On the supertertiary structure of proteins

Intrinsically disordered proteins and complex multidomain proteins are characterized by a dynamic ensemble of conformations that cannot be unequivocally described by traditional static terms of structural biology. The functional importance of this structural complexity necessitates new standards and protocols for the description and deposition of such 'supertertiary' structural ensembles into structural databases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterogeneity of supertertiary structures in three multidomain proteins.
Figure 2: Conformational energy landscape of tertiary and supertertiary structures.

References

  1. Berman, H.M. Acta Crystallogr. A 64, 88–95 (2008).

    Article  CAS  Google Scholar 

  2. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Science 308, 1318–1321 (2005).

    Article  CAS  Google Scholar 

  3. Chandonia, J.M. & Brenner, S.E. Science 311, 347–351 (2006).

    Article  CAS  Google Scholar 

  4. Chiti, F. & Dobson, C.M. Annu. Rev. Biochem. 75, 333–36 (2006).

    Article  CAS  Google Scholar 

  5. Dyson, H.J. & Wright, P.E. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  6. Tompa, P. Curr. Opin. Struct. Biol. 21, 419–425 (2011).

    Article  CAS  Google Scholar 

  7. Diella, F. et al. Front. Biosci. 13, 6580–6603 (2008).

    Article  CAS  Google Scholar 

  8. Fisher, C.K. & Stultz, C.M. Curr. Opin. Struct. Biol. 21, 426–431 (2011).

    Article  CAS  Google Scholar 

  9. Atkins, A.R., Gallin, W.J., Owens, G.C., Edelman, G.M. & Cunningham, B.A. J. Biol. Chem. 279, 49633–49643 (2004).

    Article  CAS  Google Scholar 

  10. Tompa, P. & Fuxreiter, M. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  CAS  Google Scholar 

  11. Litvinovich, S.V. & Ingham, K.C. J. Mol. Biol. 248, 611–626 (1995).

    Article  CAS  Google Scholar 

  12. Yang, S., Blachowicz, L., Makowski, L. & Roux, B. Proc. Natl. Acad. Sci. USA 107, 15757–15762 (2010).

    Article  CAS  Google Scholar 

  13. Wiesner, S. et al. Cell 130, 651–662 (2007).

    Article  CAS  Google Scholar 

  14. Smock, R.G. et al. Mol. Syst. Biol. 6, 414 (2010).

    Article  Google Scholar 

  15. Burmann, B.M., Scheckenhofer, U., Schweimer, K. & Rosch, P. Biochem. J. 435, 783–789 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, J., Petit, C.M., King, D.S. & Lee, A.L. J. Biol. Chem. 286, 41776–41785 (2011).

    Article  CAS  Google Scholar 

  17. Leung, D.W. & Rosen, M.K. Proc. Natl. Acad. Sci. USA 102, 5685–5690 (2005).

    Article  CAS  Google Scholar 

  18. Li, P., Martins, I.R., Amarasinghe, G.K. & Rosen, M.K. Nat. Struct. Mol. Biol. 15, 613–618 (2008).

    Article  CAS  Google Scholar 

  19. Kobe, B. Nat. Struct. Biol. 6, 388–397 (1999).

    Article  CAS  Google Scholar 

  20. Luo, R., Miller Jenkins, L.M., Randazzo, P.A. & Gruschus, J. Cell. Signal. 20, 1968–1977 (2008).

    Article  CAS  Google Scholar 

  21. Dill, K.A. & Chan, H.S. Nat. Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  22. Swain, J.F. & Gierasch, L.M. Curr. Opin. Struct. Biol. 16, 102–108 (2006).

    Article  CAS  Google Scholar 

  23. Mittag, T., Kay, L.E. & Forman-Kay, J.D. J. Mol. Recognit. 23, 105–116 (2010).

    CAS  PubMed  Google Scholar 

  24. Srivastava, A. et al. Proc. Natl. Acad. Sci. USA 107, 4884–4889 (2010).

    Article  CAS  Google Scholar 

  25. Lim, R.W., Furukawa, R. & Fechheimer, M. Biochemistry 38, 16323–16332 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO) Odysseus grant G.0029.12. The author is grateful to A. Bekesi for helpful discussions and to S. Kosol for her help in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tompa.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tompa, P. On the supertertiary structure of proteins. Nat Chem Biol 8, 597–600 (2012). https://doi.org/10.1038/nchembio.1009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1009

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research