Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myocardial-cell replacement: the science, the clinic and the future

Abstract

The traditional view of the heart is of an organ incapable of self-renewal. Hypotheses on the genesis of pump dysfunction in heart failure include emerging concepts of myocyte deficiency due to attritional ischemia and chronic apoptotic cell loss. In the adult heart, inadequate regenerative capacity was presumed to exist to counterbalance such extensive myocyte depletion. Preliminary animal and human studies now challenge the paradigm of myocardial regenerative inadequacy, with findings suggesting that noncardiac cells implanted in the dysfunctional heart augment myocyte deficiency and contractile mass. Data from these studies remain inconclusive and have generated much debate in the basic science and clinical communities. Controversial issues center on the scientific basis for regeneration in the heart, the mechanism of cell-therapy benefit and the safety and appropriateness of clinical trials based on these concepts. This review will evaluate the scientific basis for myocardial-cell replacement, with emphasis on current experimental and human data. We will explore unresolved questions of experimental design, mechanism of action, therapeutic strategies and safety concerns in an era of rising numbers of human cell-therapy trials. Prospects for more widespread clinical application of myocardial-cell replacement and future hurdles to be overcome in this field will also be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fuster V et al. (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326: 242–250

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura T and Schneider MD (2003) The way to a human's heart is through the stomach: visceral endoderm-like cells drive human embryonic stem cells to a cardiac fate. Circulation 107: 2638–2639

    Article  PubMed  Google Scholar 

  3. Anversa P and Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415: 240–243

    Article  CAS  PubMed  Google Scholar 

  4. Melo LG et al. (2004) Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation 109: 2386–2393

    Article  PubMed  Google Scholar 

  5. Wagers AJ and Weissman IL (2004) Plasticity of adult stem cells. Cell 116: 639–648

    Article  CAS  PubMed  Google Scholar 

  6. Orlic D et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705

    Article  CAS  PubMed  Google Scholar 

  7. Orlic D et al. (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938: 221–229

    Article  CAS  PubMed  Google Scholar 

  8. Orlic D et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98: 10344–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saito T et al. (2003) Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg 126: 114–123

    Article  PubMed  Google Scholar 

  10. Assmus B et al. (2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106: 3009–3017

    Article  PubMed  Google Scholar 

  11. Strauer BE et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918

    Article  PubMed  Google Scholar 

  12. Perin EC et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302

    Article  PubMed  Google Scholar 

  13. Soonpaa MH and Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83: 15–26

    Article  CAS  PubMed  Google Scholar 

  14. Oh H and Schneider MD (2002) The emerging role of telomerase in cardiac muscle cell growth and survival. J Mol Cell Cardiol 34: 717–724

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49

    Article  CAS  PubMed  Google Scholar 

  16. Badorff C et al. (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107: 1024–1032

    Article  PubMed  Google Scholar 

  17. Chiu RC et al. (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60: 12–18

    Article  CAS  PubMed  Google Scholar 

  18. Taylor DA et al. (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4: 929–933

    Article  CAS  PubMed  Google Scholar 

  19. Menasche P (2003) Skeletal muscle satellite cell transplantation. Cardiovasc Res 58: 351–357

    Article  CAS  PubMed  Google Scholar 

  20. Reinecke H et al. (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34: 241–249

    Article  CAS  PubMed  Google Scholar 

  21. Reinecke H et al. (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149: 731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Menasche P et al. (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41: 1078–1083

    Article  PubMed  Google Scholar 

  23. Condorelli G et al. (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98: 10733–10738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jackson KA et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murry CE et al. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668

    Article  CAS  PubMed  Google Scholar 

  26. Balsam LB et al. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428: 668–673

    Article  CAS  PubMed  Google Scholar 

  27. Oh H et al. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100: 12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seale P et al. (2001) The potential of muscle stem cells. Dev Cell 1: 333–342

    Article  CAS  PubMed  Google Scholar 

  29. Beltrami AP et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776

    Article  CAS  PubMed  Google Scholar 

  30. Muller P et al. (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106: 31–35

    Article  PubMed  Google Scholar 

  31. Laflamme MA et al. (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90: 634–640

    Article  CAS  PubMed  Google Scholar 

  32. Quaini F et al. (2002) Chimerism of the transplanted heart. N Engl J Med 346: 5–15

    Article  PubMed  Google Scholar 

  33. Hruban RH et al. (1993) Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. Am J Pathol 142: 975–980

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Deb A et al. (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 107: 1247–1249

    Article  PubMed  Google Scholar 

  35. Simper D et al. (2003) Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation 108: 143–149

    Article  PubMed  Google Scholar 

  36. Caplice NM et al. (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci U S A 100: 4754–4759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamm C et al. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45–46

    Article  PubMed  Google Scholar 

  38. Hamano K et al. (2001) Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J 65: 845–847

    Article  CAS  PubMed  Google Scholar 

  39. Agbulut O et al. (2004) Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol 44: 458–463

    Article  CAS  PubMed  Google Scholar 

  40. Couzin J and Vogel G (2004) Cell therapy. Renovating the heart. Science 304: 192–194

    Article  CAS  PubMed  Google Scholar 

  41. Pittenger MF and Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95: 9–20

    Article  CAS  PubMed  Google Scholar 

  42. Dimmeler S and Vasa-Nicotera M (2003) Aging of progenitor cells: limitation for regenerative capacity? J Am Coll Cardiol 42: 2081–2082

    Article  PubMed  Google Scholar 

  43. Rauscher FM et al. (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108: 457–463

    Article  PubMed  Google Scholar 

  44. Hill JM et al. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593–600

    Article  PubMed  Google Scholar 

  45. Yoon YS et al. (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109: 3154–3157

    Article  PubMed  Google Scholar 

  46. Hu Y et al. (2003) Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 108: 3122–3127

    Article  PubMed  Google Scholar 

  47. Moulton KS et al. (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 100: 4736–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aicher A et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107: 2134–2139

    Article  PubMed  Google Scholar 

  49. Singh SK et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    CAS  PubMed  Google Scholar 

  50. Vulliet PR et al. (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363: 783–784

    Article  PubMed  Google Scholar 

  51. Kang HJ et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363: 751–756

Download references

Acknowledgements

We thank Toni Higgins for assitance in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel M Caplice.

Ethics declarations

Competing interests

The authors declined to provide information about competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplice, N., Deb, A. Myocardial-cell replacement: the science, the clinic and the future. Nat Rev Cardiol 1, 90–95 (2004). https://doi.org/10.1038/ncpcardio0051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing