Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TIN2, a new regulator of telomere length in human cells

Abstract

Telomeres are DNA-protein structures that cap linear chromosomes and are essential for maintaining genomic stability and cell phenotype. We identified a novel human telomere-associated protein, TIN2, by interaction cloning using the telomeric DNA-binding-protein TRF1 as a bait. TIN2 interacted with TRF1 in vitro and in cells, and co-localized with TRF1 in nuclei and metaphase chromosomes. A mutant TIN2 that lacks amino-terminal sequences effects elongated human telomeres in a telomerase-dependent manner. Our findings suggest that TRF1 is insufficient for control of telomere length in human cells, and that TIN2 is an essential mediator of TRF1 function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and structural characteristics of human TIN2.
Figure 2: TIN2 interacts with TRF1 in vitro and in cells.
Figure 3: Truncated TIN2 proteins extend telomere length.
Figure 4: TIN2 subcellular localization.
Figure 5: Expression pattern of TINF2 mRNA.
Figure 6: Telomerase dependence.
Figure 7: TIN2-13 does not displace TRF1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Aparicio, O.M., Billington, B.L. & Gottschling, D.E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1995).

    Article  Google Scholar 

  3. Brachmann, C.B. et al. The SIR2 gene family, conserved from bacteria to humans, function in silencing, cell cycle progression and chromosome stability. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Marchand, S., Buck, S.W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by RAP1 protein. Genes Dev. 10, 1297–1309 (1996).

    Article  Google Scholar 

  5. Campisi, J. The biology of replicative senescence. Eur. J. Cancer 33, 703–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Lingner, J. & Cech, T.R. Telomerase and chromosome end maintenance. Curr. Opin. Genet. Dev. 8, 226– 232 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nugent, C.I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Shay, J.W. & Wright, W.E. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1071, 1–7 (1991).

    Article  Google Scholar 

  11. Campisi, J., Dimri, G.P. & Hara, E. Control of replicative senescence. in Handbook of the Biology of Aging (eds Schneider, E. & Rowe, J.) 121 –149 (Academic, New York, 1996).

    Google Scholar 

  12. Bodnar, A.G. et al. Extension of life span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279– 282 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bodnar, A.G., Kim, N.W., Effros, R.B. & Chiu, C.P. Mechanism of telomerase induction during T cell activation. Exp. Cell Res. 228, 58–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Buchkovich, K.J. & Greider, C.W. Telomerase regulation during entry into the cell cycle in normal human T cells. Mol. Biol. Cell 7, 1443–1454 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A. & Reddel, R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Shore, D. Telomerase and telomere-binding proteins: controlling the end game. Trends Biochem. Sci. 22, 233–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Conrad, M.N., Wright, J.H., Wolf, A.J. & Zakian, V.A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Kyrion, G., Boakye, K.A. & Lustig, A.J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159– 5173 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wotton, D. & Shore, D. A novel RAP1p-interacting factor, RIF2p, cooperates with RIF1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748– 760 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Cockell, M. et al. The carboxy termini of SIR4 and RAP1 affect SIR3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129, 909– 924 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Grandin, N., Reed, S.I. & Charbonneau, M. STN1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with CDC13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. CDC13p: a single-strand telomeric DNA binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Chong, L. et al. A human telomeric protein. Science 270 , 1663–1667 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Shen, M., Haggblom, C., Vogt, M., Hunter, T. & Lu, K.P. Characterization and cell cycle regulation of the related telomeric proteins PIN2 and TRF1 suggest a role in mitosis. Proc. Natl Acad. Sci. USA 94, 13618–13623 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Griffith, J., Bianchi, A. & de Lange, T. TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol. 278, 79– 88 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end to end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly (ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Chien, C.T., Bartel, P.L., Sternglanz, R. & Fields, S. The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci USA 88, 9578–9582 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17, 498–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Counter C.M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Dimri, G.P., Testori, A., Acosta, M. & Campisi, J. Replicative senescence, aging and growth regulatory transcription factors. Biol. Signals 5, 154–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144 , 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–988 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dimri, G.P., Hara, E. & Campisi, J. Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J. Biol. Chem. 269, 16180–16186 (1994).

    CAS  PubMed  Google Scholar 

  42. Dimri G.P. et al. (1995). A novel biomarker identifies senescent human cells in culture and aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

  43. Briand, P., Petersen, O.W. & van Deurs, B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in a chemically defined medium. In Vitro Cell Dev. Biol. 23, 181–188 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Finer, M.H., Dull, T.J., Qin, L., Farson, D. & Roberts, M.R. kat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood 83, 43–50 (1994).

    CAS  PubMed  Google Scholar 

  45. Sambrook, J., Fritch, E.F. & Maniatis, T. Molecular Cloning (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  46. Compton, D.A., Yen, T.J. & Cleveland, D.W. Identification of a novel centromere/kinetochore-associated protein using monoclonal antibodies generated against human mitotic chromosome scaffolds. J. Cell Biol. 112, 1083– 1097 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Zhong, Z., Shiue, L., Kaplan, S. & de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 12, 4834–4843 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. James for yeast PJ69-4A and sharing strains before publication; R. Weinberg for hTERT cDNA; and M. Bissell and R. Lupu for HMT-3522 and MDA-453 cells. Supported by research (AG09909) and training (AG00266) grants from the National Institute on Aging, a fellowship (2F1B-0026) from the University of California Breast Cancer Research Program and research grant from the Ellison Medical Foundation, under contract DE-AC03-76SF00098 from the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Campisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Sh., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat Genet 23, 405–412 (1999). https://doi.org/10.1038/70508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing