Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Tα chain expression

Abstract

Cooperation between the stem cell leukemia (SCL) transcription factor and its nuclear partners LMO1 or LMO2 induces aggressive T cell acute lymphoblastic leukemia when inappropriately expressed in T cells. This study examined the cellular and molecular targets of the SCL-LMO complex at the pre-leukemic stage. We show that SCL and its partners are coexpressed in the most primitive thymocytes. Maturation to the pre-T cell stage is associated with a down-regulation of SCL and LMO1 and LMO2, and a concomitant up-regulation of E2A and HEB expression. Moreover, enforced expression of SCL-LMO1 inhibits T cell differentiation and recapitulates a loss of HEB function, causing a deregulation of the transition checkpoint from the CD4CD8 to CD4+CD8+ stages. Finally, we identify the gene encoding pTα as a downstream target of HEB that is specifically repressed by the SCL-LMO complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SCL and its partners are coexpressed in primitive DN thymocytes.
Figure 2: Consequences of SCL-LMO1 expression in the thymus.
Figure 3: Increased apoptosis and decreased cell cycling at the DN to DP transition.
Figure 4: The SCL-LMO complex represses the expression of pTα.
Figure 5: Specific repression of pTa enhancer by the SCL-LMO complex.
Figure 6: SCL-LMO1 expression down-regulates CD4 expression.

Similar content being viewed by others

References

  1. Bain, G. & Murre, C. The role of E-proteins. Semin. Immunol. 10, 143–153 (1998).

    CAS  PubMed  Google Scholar 

  2. Robb, L. et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl Acad. Sci. USA 92, 7075–7079 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    CAS  PubMed  Google Scholar 

  4. Gering, M., Rodaway, A.R., Gottgens, B., Patient, R.K. & Green, A.R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17, 4029–4045 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brady, G. et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr. Biol. 5, 909–922 ( 1995).

    CAS  PubMed  Google Scholar 

  6. Begley, C.G. & Green, A.R. The SCL gene: from case report to critical hematopoietic regulator. Blood 93, 2760–2770 (1999).

    CAS  PubMed  Google Scholar 

  7. Wadman, I.A. et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145– 3157 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grutz, G.G. et al. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J. 17 , 4594–4605 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ono, Y., Fukuhara, N. & Yoshie, O. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol. Cell Biol. 18, 6939–6950 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Krosl, G. et al. Transcription factor SCL is required for c-kit expression and c-Kit function in hemopoietic cells. J. Exp. Med. 188, 439–450 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsu, H.L., Wadman, I. & Baer, R. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc. Natl Acad. Sci. USA 91, 3181–3185 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chervinsky, D.S. et al. Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol. Cell Biol. 19, 5025–5035 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Larson, R.C. et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice . EMBO J. 15, 1021–1027 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Condorelli, G.L. et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res. 56, 5113 –5119 (1996).

    CAS  PubMed  Google Scholar 

  15. Kelliher, M.A., Seldin, D.C. & Leder, P. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J. 15, 5160 –5166 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aplan, P.D. et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J. 16, 2408– 2419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bain, G. et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol. Cell Biol. 17, 4782–4791 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barndt, R., Dai, M.F. & Zhuang, Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during αβ thymopoiesis. J. Immunol. 163, 3331–3343 ( 1999).

    CAS  PubMed  Google Scholar 

  19. Kim, D., Peng, X.C. & Sun, X.H. Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol. Cell Biol. 19, 8240 –8253 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Blom, B. et al. Disruption of αβ but not of γδ T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors. EMBO J. 18, 2793– 2802 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr. Opin. Immunol. 11, 135– 142 (1999).

    CAS  PubMed  Google Scholar 

  22. Aplan, P.D. et al. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250, 1426–1429 (1990).

    CAS  PubMed  Google Scholar 

  23. Godfrey, D.I. & Zlotnik, A. Control points in early T-cell development . Immunol. Today 14, 547– 553 (1993).

    CAS  PubMed  Google Scholar 

  24. Mouthon, M.A. et al. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81, 647– 655 (1993).

    CAS  PubMed  Google Scholar 

  25. Kallianpur, A.R., Jordan, J.E. & Brandt, S.J. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83, 1200–1208 ( 1994).

    CAS  PubMed  Google Scholar 

  26. Elefanty, A.G. et al. Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ “knock-in” strategy . Proc. Natl Acad. Sci. USA 95, 11897– 11902 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenny, D.A., Jurata, L.W., Saga, Y. & Gill, G.N. Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc. Natl Acad. Sci. USA 95, 11257–11262 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, G., Hare, K.J. & Jenkinson, E.J. Positive selection of thymocytes: the long and winding road. Immunol. Today 20, 463– 468 (1999).

    CAS  PubMed  Google Scholar 

  29. Wilson, R.B. et al. Repression of immunoglobulin enhancers by the helix-loop-helix protein Id: implications for B-lymphoid-cell development. Mol. Cell Biol. 11, 6185–6191 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Reizis, B. & Leder, P. Expression of the mouse pre-T cell receptor α gene is controlled by an upstream region containing a transcriptional enhancer. J. Exp. Med. 189, 1669– 1678 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawada, S. & Littman, D.R. A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol. Cell Biol. 13, 5620– 5628 (1993).

  32. Winandy, S., Wu, L., Wang, J.H. & Georgopoulos, K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J. Exp. Med. 190, 1039– 1048 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Henning, S.W. & Cantrell, D.A. p56lck signals for regulating thymocyte development can be distinguished by their dependency on Rho function . J. Exp. Med. 188, 931– 939 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bain, G., Romanow, W.J., Albers, K., Havran, W.L. & Murre, C. Positive and negative regulation of V(D)J recombination by the E2A proteins. J. Exp. Med. 189, 289–300 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Morrow, M.A., Mayer, E.W., Perez, C.A., Adlam, M. & Siu, G. Overexpression of the Helix-Loop-Helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36, 491 –503 (1999).

    CAS  PubMed  Google Scholar 

  36. Smith, K.S., Rhee, J.W., Naumovski, L. & Cleary, M.L. Disrupted differentiation and oncogenic transformation of lymphoid progenitors in E2A-HLF transgenic mice. Mol. Cell Biol. 19, 4443–4451 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Look, A.T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 ( 1997).

    CAS  PubMed  Google Scholar 

  38. Wang, J. et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc. Natl Acad. Sci. USA 97, 3497– 3502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peverali, F.A. et al. Regulation of G1 progression by E2A and Id helix-loop-helix proteins. EMBO J. 13, 4291– 4301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Prabhu, S., Ignatova, A., Park, S.T. & Sun, X.H. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins . Mol. Cell Biol. 17, 5888– 5896 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McGuire, E.A., Rintoul, C.E., Sclar, G.M. & Korsmeyer, S.J. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol. Cell Biol. 12 , 4186–4196 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhuang, Y., Cheng, P. & Weintraub, H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell Biol. 16, 2898–2905 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hugo, P., Boyd, R.L., Waanders, G.A., Petrie, H.T. & Scollay, R. Timing of deletion of autoreactive Vβ6+ cells and down-modulation of either CD4 or CD8 on phenotypically distinct CD4+8+ subsets of thymocytes expressing intermediate or high levels of T cell receptor. Int. Immunol. 3, 265–272 (1991).

    CAS  PubMed  Google Scholar 

  44. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate phenol-chloroform extraction . Anal. Biochem. 162, 156– 159 (1987).

    CAS  PubMed  Google Scholar 

  45. Nordeen, S.K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6, 454–458 (1988).

    CAS  PubMed  Google Scholar 

  46. Hernandez-Munain, C., Sleckman, B.P. & Krangel, M.S. A developmental switch from TCRδ enhancer to TCRα enhancer function during thymocyte maturation. Immunity 10, 723–733 ( 1999).

    CAS  PubMed  Google Scholar 

  47. Aplan, P.D. et al. The SCL gene is formed from a transcriptionally complex locus . Mol. Cell Biol. 10, 6426– 6435 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dong, W.F. et al. Molecular characterization of a chromosome translocation breakpoint t(11;14)(p13;q11) from the cell line KOPT-K1. Leukemia 9, 1812–1817 (1995).

    CAS  PubMed  Google Scholar 

  49. Nelson, C., Shen, L.P., Meister, A., Fodor, E. & Rutter, W.J. Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev. 4, 1035–1043 (1990).

    CAS  PubMed  Google Scholar 

  50. Hawley, R.G., Lieu, F.H., Fong, A.Z. & Hawley, T.S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Tessier for assistance with cell sorting and M. Ratcliffe and A. Veillette for reading the manuscript. This work was supported in part by a grant from the Medical Research Council of Canada and a postdoctoral fellowship from the French Medical Research Foundation and the Fonds de la recherche en santé du Québec (S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trang Hoang.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herblot, S., Steff, AM., Hugo, P. et al. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Tα chain expression. Nat Immunol 1, 138–144 (2000). https://doi.org/10.1038/77819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing