Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant thermal Hall effect in multiferroics

Abstract

Multiferroics1,2, in which dielectric and magnetic orders coexist and couple with each other, attract renewed interest for their cross-correlated phenomena3,4, offering a fundamental platform for novel functionalities. Elementary excitations in such systems are strongly affected by the lattice–spin interaction, as exemplified by the electromagnons5,6 and the magneto-thermal transport7,8,9,10. Here we report an unprecedented coupling between magnetism and phonons in multiferroics, namely, the giant thermal Hall effect. The thermal transport of insulating polar magnets (ZnxFe1−x)2Mo3O8 is dominated by phonons, yet extremely sensitive to the magnetic structure. In particular, large thermal Hall conductivities are observed in the ferrimagnetic phase, indicating unconventional lattice–spin interactions and a new mechanism for the Hall effect in insulators. Our results show that the thermal Hall effect in multiferroic materials can be an effective probe for strong lattice–spin interactions and provide a new tool for magnetic control of thermal currents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and magnetic phase diagram of (ZnxFe1−x)2Mo3O8.
Figure 2: Thermal and magnetic properties of (Zn0.125Fe0.875)2Mo3O8.
Figure 3: Thermal and magnetic properties of Fe2Mo3O8.
Figure 4: Thermal Hall effect in insulators.

Similar content being viewed by others

References

  1. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  2. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  3. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  4. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Article  Google Scholar 

  5. Pimenov, A. et al. Possible evidence for electromagnons in mutiferroic manganites. Nat. Phys. 2, 97–100 (2006).

    Article  CAS  Google Scholar 

  6. Takahashi, Y. et al. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat. Phys. 8, 121–125 (2012).

    Article  CAS  Google Scholar 

  7. Sharma, P. A. et al. Thermal conductivity of geometrically frustrated, ferroelectric YMnO3: extraordinary spin-phonon intereactions. Phys. Rev. Lett. 93, 177202 (2004).

    Article  CAS  Google Scholar 

  8. Jiang, L., Zhang, M. & Jiang, Q. Thermal transport by lattice excitations in hexagonal rare-earth manganites. J. Appl. Phys. 104, 083718 (2008).

    Article  Google Scholar 

  9. Wang, X. M. et al. Large magnetothermal conductivity of HoMnO3 single crystals and its relation to the magnetic-field-induced transitions of magnetic structure. Phys. Rev. B 82, 094405 (2010).

    Article  Google Scholar 

  10. Zhou, J.-S. & Goodenough, J. B. Unusual evolution of the magnetic interactions versus structual distortions in RMnO3 perovskites. Phys. Rev. Lett. 96, 247202 (2006).

    Article  Google Scholar 

  11. Hall, E. H. N. On the “rotational coefficient” in nickel and cobalt. Proc. Phys. Soc. Lond. 4, 325–342 (1880).

    Article  Google Scholar 

  12. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  13. Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

    Article  CAS  Google Scholar 

  14. Sheng, L., Sheng, D. N. & Ting, C. S. Theory of the phonon Hall effect in paramagnetic dielectrics. Phys. Rev. Lett. 96, 155901 (2006).

    Article  CAS  Google Scholar 

  15. Kagan, Y. & Maksimov, L. A. Anomalous Hall effect for the phonon heat conductivity in paramagnetic dielectrics. Phys. Rev. Lett. 100, 145902 (2008).

    Article  Google Scholar 

  16. Mori, M., Spencer-Smith, A., Sushkov, O. P. & Maewasa, S. Origin of the phonon Hall effect in rare-earth garnets. Phys. Rev. Lett. 113, 265901 (2014).

    Article  Google Scholar 

  17. Fujimoto, S. Hall effect of spin waves in frustrated magnets. Phys. Rev. Lett. 103, 047203 (2009).

    Article  Google Scholar 

  18. Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    Article  Google Scholar 

  19. Matsumoto, R. & Murakami, S. Rotational motion of magnons and the thermal Hall effect. Phys. Rev. B 84, 184406 (2011).

    Article  Google Scholar 

  20. Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article  CAS  Google Scholar 

  21. Ideue, T. et al. Effect of lattice geometry on magnon Hall effect in ferromagnetic insulators. Phys. Rev. B 85, 134411 (2012).

    Article  Google Scholar 

  22. Hirschberger, M., Chisnell, R., Lee, Y. S. & Ong, N. P. Thermal Hall effect of spin excitations in a kagome magnet. Phys. Rev. Lett. 115, 106603 (2015).

    Article  Google Scholar 

  23. Hirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. Lager thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet. Science 348, 106–109 (2015).

    Article  CAS  Google Scholar 

  24. Watanabe, D. et al. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite. Proc. Natl Acad. Sci. USA 113, 8653–8657 (2016).

    Article  CAS  Google Scholar 

  25. Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Article  Google Scholar 

  26. Mook, A., Henk, J. & Mertig, I. Magnon Hall effect and topology in kagome lattices: a theoretical investigation. Phys. Rev. B 89, 134409 (2014).

    Article  Google Scholar 

  27. McAlister, S. P. & Strobel, P. Magnetic order in M2Mo3O8 single crystals (M = Mn, Fe, Co, Ni). J. Magn. Mater. 30, 340–348 (1983).

    Article  CAS  Google Scholar 

  28. Wang, Y. et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8 . Sci. Rep. 5, 12268 (2015).

    Article  CAS  Google Scholar 

  29. Kurumaji, T., Ishiwata, S. & Tokura, Y. Doping-tunable ferrimagnetic phase with large linear magnetoelectric effect in a polar magnet Fe2Mo3O8 . Phys. Rev. X 5, 031034 (2015).

    Google Scholar 

  30. Onoda, S., Sugimoto, N. & Nagaosa, N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys. Rev. Lett. 97, 126602 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Yoshioka, H. Katsura and N. Nagaosa for fruitful discussions about the origin of the Hall effect. This research was supported by the following grants; MEXT Grant-in-Aid for Research Activity Start-up (No. JP15H06133), MEXT KAKENHI (No. JP24224009), and CREST, JST (No. JPMJCR16F1).

Author information

Authors and Affiliations

Authors

Contributions

T.I., T.K. and Y.T. conceived and designed the experiments. T.K. and S.I. synthesized the single crystals of (ZnxFe1−x)2Mo3O8 and T.K. characterized the magnetic and dielectric properties of samples. T.I. carried out the thermal transport experiments. T.I., T.K. and Y.T. led the physical discussions and wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to T. Ideue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ideue, T., Kurumaji, T., Ishiwata, S. et al. Giant thermal Hall effect in multiferroics. Nature Mater 16, 797–802 (2017). https://doi.org/10.1038/nmat4905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing