Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development

Abstract

The neuronal diversity of the CNS emerges largely from controlled spatial and temporal segregation of cell type-specific molecular regulators. We found that the transcription factor SOX6 controls the molecular segregation of dorsal (pallial) from ventral (subpallial) telencephalic progenitors and the differentiation of cortical interneurons, regulating forebrain progenitor and interneuron heterogeneity. During corticogenesis in mice, SOX6 and SOX5 were largely mutually exclusively expressed in pallial and subpallial progenitors, respectively, and remained mutually exclusive in a reverse pattern in postmitotic neuronal progeny. Loss of SOX6 from pallial progenitors caused their inappropriate expression of normally subpallium-restricted developmental controls, conferring mixed dorsal-ventral identity. In postmitotic cortical interneurons, loss of SOX6 disrupted the differentiation and diversity of cortical interneuron subtypes, analogous to SOX5 control over cortical projection neuron development. These data indicate that SOX6 is a central regulator of both progenitor and cortical interneuron diversity during neocortical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOX6 and SOX5 are expressed in complementary populations of telencephalic progenitors and neuronal progeny during corticogenesis.
Figure 2: SOX6 and SOX5 are cross-repressive in pallial and subpallial telencephalic progenitor domains.
Figure 3: Loss of SOX6 function results in ectopic proneural gene expression in pallial progenitors and subpallial mantle zones.
Figure 4: Loss of SOX6 function results in abnormal early cortical interneuron differentiation, without a change in interneuron number.
Figure 5: Loss of SOX6 function disrupts the normal laminar position and morphology of cortical interneurons.
Figure 6: SOX6 is necessary for cortical interneuron subtype development.
Figure 7: Loss of SOX6 function produces an increased number of early- and late-born NPY-positive cortical interneurons.
Figure 8: SOX6 control over MGE-derived cortical interneuron subtype differentiation is population autonomous.

Similar content being viewed by others

References

  1. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    Article  CAS  Google Scholar 

  2. Wonders, C.P. & Anderson, S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

    Article  CAS  Google Scholar 

  3. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  4. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Parras, C.M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).

    Article  CAS  Google Scholar 

  6. Butt, S.J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).

    Article  CAS  Google Scholar 

  7. Miyoshi, G., Butt, S.J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).

    Article  CAS  Google Scholar 

  8. Flames, N. et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682–9695 (2007).

    Article  CAS  Google Scholar 

  9. Wonders, C.P. et al. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev. Biol. 314, 127–136 (2008).

    Article  CAS  Google Scholar 

  10. Fogarty, M. et al. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J. Neurosci. 27, 10935–10946 (2007).

    Article  CAS  Google Scholar 

  11. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  12. Flames, N. & Marin, O. Developmental mechanisms underlying the generation of cortical interneuron diversity. Neuron 46, 377–381 (2005).

    Article  CAS  Google Scholar 

  13. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4 Suppl, 1177–1182 (2001).

    Article  CAS  Google Scholar 

  14. Levitt, P., Eagleson, K.L. & Powell, E.M. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 27, 400–406 (2004).

    Article  CAS  Google Scholar 

  15. Armijo, J.A., Valdizan, E.M., De Las Cuevas, I. & Cuadrado, A. Rev. Neurol. Advances in the physiopathology of epileptogenesis: molecular aspects. 34, 409–429 (2002).

    CAS  PubMed  Google Scholar 

  16. Rubenstein, J.L. & Merzenich, M.M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  CAS  Google Scholar 

  17. Lewis, D.A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31, 270–276 (2000).

    Article  CAS  Google Scholar 

  18. Arlotta, P. et al. Neuronal subtype–specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  19. Chen, B., Schaevitz, L.R. & McConnell, S.K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17184–17189 (2005).

    Article  CAS  Google Scholar 

  20. Chen, J.G., Rasin, M.R., Kwan, K.Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17792–17797 (2005).

    Article  CAS  Google Scholar 

  21. Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247 (2008).

    Article  CAS  Google Scholar 

  22. Alcamo, E.A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377 (2008).

    Article  CAS  Google Scholar 

  23. Britanova, O. et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378–392 (2008).

    Article  CAS  Google Scholar 

  24. Joshi, P.S. et al. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II–V of the developing neocortex. Neuron 60, 258–272 (2008).

    Article  CAS  Google Scholar 

  25. Kwan, K.Y. et al. SOX5 postmitotically regulates migration, postmigratory differentiation and projections of subplate and deep-layer neocortical neurons. Proc. Natl. Acad. Sci. USA 105, 16021–16026 (2008).

    Article  CAS  Google Scholar 

  26. Cobos, I. et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci. 8, 1059–1068 (2005).

    Article  CAS  Google Scholar 

  27. Liodis, P. et al. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J. Neurosci. 27, 3078–3089 (2007).

    Article  CAS  Google Scholar 

  28. Zhao, Y. et al. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J. Comp. Neurol. 510, 79–99 (2008).

    Article  CAS  Google Scholar 

  29. Du, T., Xu, Q., Ocbina, P.J. & Anderson, S.A. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 135, 1559–1567 (2008).

    Article  CAS  Google Scholar 

  30. Butt, S.J. et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59, 722–732 (2008).

    Article  CAS  Google Scholar 

  31. Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).

    Article  CAS  Google Scholar 

  32. Stolt, C.C. et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev. Cell 11, 697–709 (2006).

    Article  CAS  Google Scholar 

  33. Wegner, M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420 (1999).

    Article  CAS  Google Scholar 

  34. Wegner, M. & Stolt, C.C. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28, 583–588 (2005).

    Article  CAS  Google Scholar 

  35. Connor, F., Wright, E., Denny, P., Koopman, P. & Ashworth, A. The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 23, 3365–3372 (1995).

    Article  CAS  Google Scholar 

  36. Narahara, M., Yamada, A., Hamada-Kanazawa, M., Kawai, Y. & Miyake, M. cDNA cloning of the Sry-related gene Sox6 from rat with tissue-specific expression. Biol. Pharm. Bull. 25, 705–709 (2002).

    Article  CAS  Google Scholar 

  37. Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

    Article  CAS  Google Scholar 

  38. Carney, R.S. et al. Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J. Neurosci. 26, 11562–11574 (2006).

    Article  CAS  Google Scholar 

  39. Ma, Q., Sommer, L., Cserjesi, P. & Anderson, D.J. Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. J. Neurosci. 17, 3644–3652 (1997).

    Article  CAS  Google Scholar 

  40. Scardigli, R., Baumer, N., Gruss, P., Guillemot, F. & Le Roux, I. Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130, 3269–3281 (2003).

    Article  CAS  Google Scholar 

  41. Britz, O. et al. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex 16 Suppl 1, i138–i151 (2006).

    Article  Google Scholar 

  42. Batista-Brito, R., Machold, R., Klein, C. & Fishell, G. Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb. Cortex 18, 2306–2317 (2008).

    Article  Google Scholar 

  43. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  Google Scholar 

  44. Cavanagh, M.E. & Parnavelas, J.G. Development of somatostatin immunoreactive neurons in the rat occipital cortex: a combined immunocytochemical-autoradiographic study. J. Comp. Neurol. 268, 1–12 (1988).

    Article  CAS  Google Scholar 

  45. Cavanagh, M.E. & Parnavelas, J.G. Development of neuropeptide Y (NPY) immunoreactive neurons in the rat occipital cortex: a combined immunohistochemical-autoradiographic study. J. Comp. Neurol. 297, 553–563 (1990).

    Article  CAS  Google Scholar 

  46. Vega, C.J. & Peterson, D.A. Stem cell proliferative history in tissue revealed by temporal halogenated thymidine analog discrimination. Nat. Methods 2, 167–169 (2005).

    Article  CAS  Google Scholar 

  47. Holm, P.C. et al. Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol. Cell. Neurosci. 34, 99–119 (2007).

    Article  CAS  Google Scholar 

  48. Molnár, Z. & Butler, A.B. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24, 530–541 (2002).

    Article  Google Scholar 

  49. Nóbrega-Pereira, S. et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733–745 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Billmers, A. Palmer, L. Pasquina, K. Quinn, D. Schuback, E. Sievert, A. Wheeler and T. Yamamoto for superb technical assistance, G. Fishell, R. Batista-Brito, G. Miyoshi, P. Arlotta, B. Molyneaux, H. Padmanabhan, F. Guillemot, Q. Ma, C. Cepko and L. Goodrich for helpful discussions and input, U. Berger for technical assistance with in situ hybridization, C. Lois, R. Hevner, V. Lefebvre, F. Guillemot, V. Pachnis and Y. Yanagawa for generously sharing mice, antibodies and reagents, and current and past members of our laboratory for helpful suggestions. This work was partially supported by grants from the US National Institutes of Health (NS49553 and NS45523; additional infrastructure supported by NS41590), the Travis Roy Foundation, the Spastic Paraplegia Foundation, the Massachusetts Spinal Cord Injury research program, and the Harvard Stem Cell Institute to J.D.M., and by the Jane and Lee Seidman Fund for CNS Research, and the Emily and Robert Pearlstein Fund for Nervous System Repair. E.A. was partially supported by a US National Institutes of Health individual predoctoral National Research Service Award fellowship (F31 NS060421). D.J. was partially supported by fellowships from the Swiss National Science Foundation and the Holcim Foundation. R.M.F. was partially supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and J.D.M. designed the overall experimental directions and specific analyses, and wrote and edited the manuscript. E.A. also performed all of the experiments and data analysis. D.J. co-performed the microarray experiments and assisted with interneuron quantification, microarray data evaluation, experimental design and data analysis, and manuscript writing and editing. R.M.F. performed whole-mount in situ hybridization/immunocytochemistry and assisted with BrdU/PH3 pallial progenitor analysis, microarray data evaluation, interneuron quantification, and manuscript editing. J.D.M. also contributed to data analysis and biological interpretation.

Corresponding author

Correspondence to Jeffrey D Macklis.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azim, E., Jabaudon, D., Fame, R. et al. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci 12, 1238–1247 (2009). https://doi.org/10.1038/nn.2387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing