Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic GMP pathway is critical for inducing long–term sensitization of nociceptive sensory neurons

Abstract

Noxious stimulation can trigger persistent sensitization of somatosensory systems that involves memory–like mechanisms. Here we report that noxious stimulation of the mollusc Aplysia produces transcription–dependent, long–term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)–cyclic GMP–protein kinase G (PKG) pathway. Injection of cGMP induced LTH, whereas antagonists of the NO–cGMP–PKG pathway prevented pinch–induced LTH. Co–injection of calcium/cAMP–responsive–element (CRE) blocked both pinch–induced LTH and cAMP–induced LTH, but antagonists of protein kinase A (PKA) failed to block pinch–induced LTH. Thus the NO–cGMP–PKG pathway and at least one other pathway, but not the cAMP–PKA pathway, are critical for inducing LTH after brief, noxious stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Injection of cyclic GMP induces long–term hyperexcitability (LTH).
Figure 2: Comparison of LTH induced by injection of cGMP and cAMP.
Figure 3: LTH induced by cGMP injection requires macromolecular synthesis that is independent of CREB activity.
Figure 4: NO–cGMP–PKG pathway and a CREB–dependent pathway, but not PKA, are required for induction of LTH by brief noxious stimulation.

Similar content being viewed by others

References

  1. Coderre, T. J., Katz, J., Vaccarino, A. L. & Melzack, R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52, 259– 285 (1993).

    Article  CAS  Google Scholar 

  2. Walters, E. T. Injury–related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia and analgesia. Int. Rev. Neurobiol. 36, 325–427 ( 1994).

    Article  CAS  Google Scholar 

  3. Frost, W. N., Castellucci, V. F., Hawkins, R. D. & Kandel, E. R. Monosynaptic connections made by the sensory neurons of the gill– and siphon–withdrawal reflex in Aplysia participate in the storage of long–term memory for sensitization. Proc. Natl. Acad. Sci. USA 82, 8266–8269 ( 1985).

    Article  CAS  Google Scholar 

  4. Walters, E. T. Multiple sensory neuronal correlates of site–specific sensitization in Aplysia. J. Neurosci. 7, 408– 417 (1987).

    Article  CAS  Google Scholar 

  5. Cleary, L. J., Lee, W. L. & Byrne, J. H. Cellular correlates of long–term sensitization in Aplysia. J. Neurosci. 18, 5988 –5998 (1998).

    Article  CAS  Google Scholar 

  6. Billy, A. J. & Walters, E. T. Long–term expansion and sensitization of mechanosensory receptive fields in Aplysia support an activity–dependent model of whole–cell sensory plasticity. J. Neurosci. 9, 1254–1262 (1989).

    Article  CAS  Google Scholar 

  7. Schacher, S., Castellucci, V. F. & Kandel, E. R. cAMP evokes long–term facilitation in Aplysia sensory neurons that requires new protein synthesis. Science 240, 1667–1669 ( 1988).

    Article  CAS  Google Scholar 

  8. Bacskai, B. J. et al. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260, 222–226 (1993).

    Article  CAS  Google Scholar 

  9. Dash, P. K., Hochner, B. & Kandel, E. R. Injection of the cAMP–responsive element into the nucleus of Aplysia sensory neurons blocks long–term facilitation. Nature 345, 718–721 (1990).

    Article  CAS  Google Scholar 

  10. Kaang, B. K., Kandel, E. R. & Grant, S. G. Activation of cAMP–responsive genes by stimuli that produce long–term facilitation in Aplysia sensory neurons. Neuron 10, 427–435 (1993).

    Article  CAS  Google Scholar 

  11. Bartsch, D., Casadio, A., Karl, K. A., Serodio, P. & Kandel, E. R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long–term facilitation. Cell 95, 211– 223 (1998).

    Article  CAS  Google Scholar 

  12. Abel, T. & Kandel, E. Positive and negative regulatory mechanisms that mediate long–term memory storage. Brain Res. Rev. 26, 360–378 ( 1998).

    Article  CAS  Google Scholar 

  13. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  Google Scholar 

  14. Wang, X. & Robinson, P. J. Cyclic GMP–dependent protein kinase and cellular signalling in the nervous system. J. Neurochem. 68, 443–456 ( 1997).

    Article  CAS  Google Scholar 

  15. Gudi, T. et al. Regulation of gene expression by cGMP–dependent protein kinase. Transactivation of the c–fos promoter. J. Biol. Chem. 271, 4597–4600 ( 1996).

    Article  CAS  Google Scholar 

  16. Woody, C. D., Swartz, B. E. & Gruen, E. Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158, 373–395 (1978).

    Article  CAS  Google Scholar 

  17. Arancio, O., Kandel, E. R. & Hawkins, R. D. Activity–dependent long–term enhancement of transmitter release by presynaptic 3',5'–cyclic GMP in cultured hippocampal neurons. Nature 376, 74– 80 (1995).

    Article  CAS  Google Scholar 

  18. Niedbala, B., Sanchez, A. & Feria, M. Nitric oxide mediates neuropathic pain behavior in peripherally denervated rats. Neurosci. Lett. 188, 57 –60 (1995).

    Article  CAS  Google Scholar 

  19. Nakazawa, K., Karachot, L., Nakabeppu, Y. & Yamamori, T. The conjunctive stimuli that cause long–term desensitization also predominantly induce c–Fos and Jun–B in cerebellar Purkinje cells. Neuroreport 4, 1275–1278 (1993).

    Article  CAS  Google Scholar 

  20. Johnston, H. M. & Morris, B. J. N–methyl–D–aspartate and nitric oxide regulate the expression of calcium/calmodulin–dependent kinase II in the hippocampal dentate gyrus. Mol. Brain Res. 31, 141–150 (1995).

    Article  CAS  Google Scholar 

  21. Belsham, D. D., Wetsel, W. C. & Mellon, P. L. NMDA and nitric oxide act through the cGMP signal transduction pathway to repress hypothalamic gonadotropin–releasing hormone gene expression. EMBO J. 15, 538 –547 (1996).

    Article  CAS  Google Scholar 

  22. Gudi, T., Lohmann, S. M. & Pilz, R. B. Regulation of gene expression by cyclic GMP–dependent protein kinase requires nuclear translocation of the kinase: identification of a nuclear localization signal. Mol. Cell. Biol. 17, 5244–5254 (1997).

    Article  CAS  Google Scholar 

  23. Harootunian, A. T. et al. Movement of the free catalytic subunit of cAMP–dependent protein kinase into and out of the nucleus can be explained by diffusion. Mol. Biol. Cell 4, 993– 1002 (1993).

    Article  CAS  Google Scholar 

  24. Fantozzi, D. A. et al. Thermostable inhibitor of cAMP–dependent protein kinase enhances the rate of export of the kinase catalytic subunit from the nucleus. J. Biol. Chem. 269, 2676– 2686 (1994).

    CAS  PubMed  Google Scholar 

  25. Scholz, K. P. & Byrne, J. H. Intracellular injection of cAMP induces a long–term reduction of neuronal K+ currents. Science 240, 1664–1666 ( 1988).

    Article  CAS  Google Scholar 

  26. Clatworthy, A. L. & Walters, E. T. Rapid amplification and facilitation of mechanosensory discharge in Aplysia by noxious stimulation. J. Neurophysiol. 70, 1181– 1194 (1993).

    Article  CAS  Google Scholar 

  27. Walters, E. T., Byrne, J. H., Carew, T. J. & Kandel, E. R. Mechanoafferent neurons innervating tail of Aplysia. I. Response properties and synaptic connections. J. Neurophysiol. 50, 1522–1542 (1983).

    Article  CAS  Google Scholar 

  28. Walters, E. T., Alizadeh, H. & Castro, G. A. Similar neuronal alterations induced by axonal injury and learning in Aplysia. Science 253, 797–799 (1991).

    Article  CAS  Google Scholar 

  29. Gunstream, J. D., Castro, G. A. & Walters, E. T. Retrograde transport of plasticity signals in Aplysia sensory neurons following axonal injury. J. Neurosci. 15, 439–448 ( 1995).

    Article  CAS  Google Scholar 

  30. Ambron, R. T., Dulin, M. F., Zhang, X.–P., Schmied, R. & Walters, E. T. Axoplasm enriched in a protein mobilized by nerve injury elicits memory–like alterations in Aplysia neurons. J. Neurosci. 15, 3440– 3446 (1995).

    Article  CAS  Google Scholar 

  31. Liao, X., Gunstream, J. D. Lewin, M. R., Ambron, R. T. & Walters, E. T. Activation of protein kinase A contributes to the expression but not the induction of long–term hyperexcitability caused by axotomy of Aplysia sensory neurons. Neuroscience (in press).

  32. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  Google Scholar 

  33. Bernabeu, R. et al. Further evidence for the involvement of a hippocampal cGMP/cGMP–dependent protein kinase cascade in memory consolidation. Neuroreport 8, 2221–2224 (1997).

    Article  CAS  Google Scholar 

  34. Kendrick, K. M. et al. Formation of olfactory memories mediated by nitric oxide. Nature 388, 670–674 (1997).

    Article  CAS  Google Scholar 

  35. Meulemans, A. et al. A nitric oxide synthase activity is involved in the modulation of acetylcholine release in Aplysia ganglion neurons: a histological, voltammetric and electrophysiological study. Neuroscience 69, 985–995 (1995).

    Article  CAS  Google Scholar 

  36. Jacklet, J. W. Nitric oxide is used as an orthograde cotransmitter at identified histaminergic synapses. J. Neurophysiol. 74, 891– 895 (1995).

    Article  CAS  Google Scholar 

  37. Floyd, P. D., Moroz, L. L., Gillette, R. & Sweedler, J. V. Capillary electrophoresis analysis of nitric oxide synthase related metabolites in single identified neurons. Anal. Chem. 70, 2243–2247 (1998).

    Article  CAS  Google Scholar 

  38. Novak–Hofer, I., Lemos, J. R., Villermain, M. & Levitan, I. B. Calcium– and cyclic nucleotide–dependent protein kinases and their substrates in the Aplysia nervous system. J. Neurosci. 5, 151–159 (1985).

    Article  Google Scholar 

  39. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus–based long–term memory. Cell 88, 615–626 ( 1997).

    Article  CAS  Google Scholar 

  40. Martin, K. C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long–term facilitation in Aplysia. Neuron 18, 899–912 ( 1997).

    Article  CAS  Google Scholar 

  41. Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB–dependent transcription and ERK nuclear translocation. Neuron 21, 869–883 ( 1998).

    Article  CAS  Google Scholar 

  42. Manseau, F., Sossin, W. S. & Castellucci, V. F. Long–term changes in excitability induced by protein kinase C activation in Aplysia sensory neurons. J. Neurophysiol. 79, 1210–1218 (1998).

    Article  CAS  Google Scholar 

  43. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor–dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  Google Scholar 

  44. Hardingham, G. E., Chawla, S., Johnson, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260– 265 (1997).

    Article  CAS  Google Scholar 

  45. Mackey, S. L., Kandel, E. R. & Hawkins, R. D. Identified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons. J. Neurosci. 9, 4227–4235 (1989).

    Article  CAS  Google Scholar 

  46. Ocorr, K. A. & Byrne, J. H. Membrane responses and changes in cAMP levels in Aplysia sensory neurons produced by serotonin, tryptamine, FMRFamide and small cardioactive peptide b (SCP b). Neurosci. Lett. 55, 113–118 ( 1985).

    Article  CAS  Google Scholar 

  47. Dale, N., Kandel, E. R. & Schacher, S. Serotonin produces long–term changes in the excitability of Aplysia sensory neurons in culture that depend on new protein synthesis. J. Neurosci. 7, 2232–2238 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NS35979 and NS35882 from the National Institute for Neurological Disorders and Stroke. We thank R.T. Ambron, P.T. Kelly, X. Liao, and F. Murad for suggestions, and C. Brou and G. Rumbly for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar T. Walters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, M., Walters, E. Cyclic GMP pathway is critical for inducing long–term sensitization of nociceptive sensory neurons. Nat Neurosci 2, 18–23 (1999). https://doi.org/10.1038/4520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing