Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Teaching silicon new tricks

Arguably the most important element for the electronics industry, silicon is now being given a new lease of life in the world of photonics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-photon absorption generates free carriers that in turn cause a significant amount of absorption.
Figure 2: Owing to the rapid increase in transistor count, in accordance with Moore's Law, the power density on a silicon chip has already exceeded 100 W cm−2.
Figure 3: A silicon image amplifier as described in ref. 2.

References

  1. Gibbs, W. W. Sci. Am. 81–87 (November 2004).

  2. Jalali, B. Sci. Am. 58–65 (February 2007).

  3. Soref, R. A. J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006).

    Article  Google Scholar 

  4. Jalali, B. & Fathpour, S. J. Lightwave Technol. 24, 4600–4615 (2006).

    Article  ADS  Google Scholar 

  5. Soref, R. A., Schmidtchen, J. & Petermann, K. J. Quant. Electron. 27, 1971–1974 (1991).

    Article  ADS  Google Scholar 

  6. Soref, R. A. & Lorenzo, J. J. Quant. Electron. 22, 873–879 (1986).

    Article  ADS  Google Scholar 

  7. Huang, Z. et al. J. Sel. Top. Quant. Electron. 12, 1450–1454 (2006).

    Article  Google Scholar 

  8. Foster, M. A. et al. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  9. Liu, Y., Chow, C. W., Cheung, W. Y. & Tsang, H. K. Photon. Technol. Lett. 18, 1882–1884 (2006).

    Article  ADS  Google Scholar 

  10. Tanabe, T. et al. Appl. Phys. Lett. 90, 031115 (2007).

    Article  ADS  Google Scholar 

  11. Krause, M. et al. in Third Int. Conf. on Group IV Photonics, Ottawa, Canada 61–63 (2006).

    Google Scholar 

  12. Tien, E.-K., Yuksek, N. S., Qian, F. & Boyraz, O. Opt. Express (in the press).

  13. Iacona, F. et al. J. Sel. Top. Quant. Electron. 12, 1596–1606 (2006).

    Article  Google Scholar 

  14. Sung, G. Y. et al. J. Sel. Top. Quant. Electron. 12, 1545–1555 (2006).

    Article  Google Scholar 

  15. Saito, S. et al. Appl. Phys. Lett. 89, 163504 (2006).

    Article  ADS  Google Scholar 

  16. Fang, A. W. et al. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  17. Muller, D. A. Nature Mater. 4, 645–647 (2004).

    Article  ADS  Google Scholar 

  18. Reed, G. T. et al. J. Sel. Top. Quant. Electron. 12, 11335–11344 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank DARPA for supporting his work on silicon photonics. He is also indebted to Sasan Fathpour and Prakash Koonath for their review of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, B. Teaching silicon new tricks. Nature Photon 1, 193–195 (2007). https://doi.org/10.1038/nphoton.2007.35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing