Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

Abstract

Coherent light–matter interaction provides powerful methods for manipulating quantum systems1,2,3. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing4,5. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations6. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance7. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Photoelectron spectra of He in the 1s2p excited state (M = ±1) in intense NIR laser fields.
Figure 3: NIR laser field intensity dependence of photoelectron yields and populations of the excited states.
Figure 4: Effect of relative polarization angle between EUV and NIR laser pulses.
Figure 5: Effect of the intermediate state detuning on the two-photon Rabi oscillations.

Similar content being viewed by others

References

  1. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  ADS  Google Scholar 

  2. Shapiro, M. & Brumer, P. Coherent control of atomic, molecular, and electronic processes. Adv. At. Mol. Opt. Phys. 42, 287–345 (2000).

    Article  ADS  Google Scholar 

  3. Tannor, D. J. & Rice, S. A. Coherent pulse sequence control of product formation in chemical reactions. Adv. Chem. Phys. 70, 441–523 (2007).

    Google Scholar 

  4. Lukin, M. D. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  ADS  Google Scholar 

  5. Saffman, M., Walker, T. G. & Molmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  6. Rickes, T. et al. Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift. J. Chem. Phys. 113, 534–546 (2000).

    Article  ADS  Google Scholar 

  7. Freeman, R. R. et al. Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092–1095 (1987).

    Article  ADS  Google Scholar 

  8. Huber, B. et al. GHz Rabi flopping to Rydberg states in hot atomic vapor cells. Phys. Rev. Lett. 107, 243001 (2011).

    Article  ADS  Google Scholar 

  9. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).

    Article  ADS  Google Scholar 

  10. Gentile, T. R., Hughey, B. J., Kleppner, D. & Ducas, T. W. Experimental study of one- and two-photon Rabi oscillations. Phys. Rev. A 40, 5103–5115 (1989).

    Article  ADS  Google Scholar 

  11. Linskens, A. F., Holleman, I., Dam, N. & Reuss, J. Two-photon Rabi oscillations. Phys. Rev. A 54, 4854–4862 (1996).

    Article  ADS  Google Scholar 

  12. Johnson, T. A. et al. Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys. Rev. Lett. 100, 113003 (2008).

    Article  ADS  Google Scholar 

  13. Reetz-Lamour, M., Amthor, T., Deiglmayr, J. & Weidemüller, M. Rabi oscillations and excitation trapping in the coherent excitation of a mesoscopic frozen Rydberg gas. Phys. Rev. Lett. 100, 253001 (2008).

    Article  ADS  Google Scholar 

  14. Kittelmann, O., Ringling, J., Nazarkin, A., Korn, G. & Hertel, I. V. Direct observation of coherent medium response under the condition of two-photon excitation of krypton by femtosecond UV-Laser pulses. Phys. Rev. Lett. 76, 2682–2685 (1996).

    Article  ADS  Google Scholar 

  15. Morishita, T. & Lin, C. D. Photoelectron spectra and high Rydberg states of lithium generated by intense lasers in the over-the-barrier ionization regime. Phys. Rev. A 87, 063405 (2013).

    Article  ADS  Google Scholar 

  16. Katsuki, H. et al. All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of bismuth. Nature Commun. 4, 2801 (2013).

    Article  ADS  Google Scholar 

  17. Wollenhaupt, M. et al. Control of interferences in an Autler-Townes doublet: symmetry of control parameters. Phys. Rev. A 68, 015401 (2003).

    Article  ADS  Google Scholar 

  18. Zhdanovich, S., Shapiro, E. A., Shapiro, M., Hepburn, J. W. & Milner, V. Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment. Phys. Rev. Lett. 100, 103004 (2008).

    Article  ADS  Google Scholar 

  19. Blanchet, V., Bouchène, M. A. & Girard, B. Temporal coherent control in the photoionization of Cs2: theory and experiment. J. Chem. Phys. 108, 4862–4876 (1998).

    Article  ADS  Google Scholar 

  20. Bayer, T., Wollenhaupt, M. & Baumert, T. Strong-field control landscapes of coherent electronic excitation. J. Phys. B 41, 074007 (2008).

    Article  ADS  Google Scholar 

  21. Krug, M. et al. Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse. New. J. Phys. 11, 105051 (2009).

    Article  ADS  Google Scholar 

  22. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001).

    Article  ADS  Google Scholar 

  23. Hosseini, S. A. & Goswami, D. Coherent control of multiphoton transitions with femtosecond pulse shaping. Phys. Rev. A 64, 033410 (2001).

    Article  ADS  Google Scholar 

  24. Lee, S., Lim, J., Ahn, J., Hakobyan, V. & Guerin, S. Strong-field two-photon transition by phase shaping. Phys. Rev. A 82, 023408 (2010).

    Article  ADS  Google Scholar 

  25. Morishita, T., Chen, Z. J., Watanabe, S. & Lin, C. D. Two-dimensional electron momentum spectra of argon ionized by short intense lasers: comparison of theory with experiment. Phys. Rev. A 75, 023407 (2007).

    Article  ADS  Google Scholar 

  26. Yabashi, M. et al. Compact XFEL and AMO sciences: SACLA and SCSS. J. Phys. B 46, 164001 (2013).

    Article  ADS  Google Scholar 

  27. Hikosaka, Y. et al. Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy. Phys. Rev. Lett. 105, 133001 (2010).

    Article  ADS  Google Scholar 

  28. Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two- Electron Atoms (Plenum, 1977).

    Book  Google Scholar 

  29. Liu, C. N., Hishikawa, A. & Morishita, T. Two-electron dynamics in nonlinear double excitation of helium by intense ultrashort extreme-ultraviolet pulses. Phys. Rev. A 86, 053426 (2012).

    Article  ADS  Google Scholar 

  30. Wiese, W. L. & Fuhr, J. R. Accurate atomic transition probabilities for hydrogen, helium, and lithium. J. Phys. Chem. Ref. Data 38, 565–726 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable comments by N. Takei and J.R. Harries, and support from the SCSS Test Accelerator Operation Group at RIKEN. This work was supported in part by JSPS KAKENHI Grant Numbers 24540425, 24350006, 26400415, 10500598.

Author information

Authors and Affiliations

Authors

Contributions

M.F., Y.H., A.M., C.N.L., T.M. and A.H. designed the experiment. M.F., A.M., T.E., Y.T., Y.H., and A.H. conducted the measurements and collected the data. M.N., T.T., M.Y. and T.I. supported the experiment. C.N.L. and T.M. performed the theoretical calculations. M.F., C.N.L., T.M. and A.H. analysed the experimental and theoretical data. M.F., T.M., C.N.L., A.M., Y.H., and A.H. wrote the manuscript.

Corresponding author

Correspondence to A. Hishikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fushitani, M., Liu, CN., Matsuda, A. et al. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields. Nature Photon 10, 102–105 (2016). https://doi.org/10.1038/nphoton.2015.228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing