Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments

Abstract

We have developed protocols for rapidly quantifying the band intensities from nucleic acid chemical mapping gels at single-nucleotide resolution. These protocols are implemented in the software SAFA (semi-automated footprinting analysis) that can be downloaded without charge from http://safa.stanford.edu. The protocols implemented in SAFA have five steps: (i) lane identification, (ii) gel rectification, (iii) band assignment, (iv) model fitting and (v) band-intensity normalization. SAFA enables the rapid quantitation of gel images containing thousands of discrete bands, thereby eliminating a bottleneck to the analysis of chemical mapping experiments. An experienced user of the software can quantify a gel image in 20 min. Although SAFA was developed to analyze hydroxyl radical (·OH) footprints, it effectively quantifies the gel images obtained with other types of chemical mapping probes. We also present a series of tutorial movies that illustrate the best practices and different steps in the SAFA analysis as a supplement to this protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic premise of the SAFA software.
Figure 2: Basic principles of gel rectification.
Figure 3: Optimum layout for a gel to be quantified by SAFA.
Figure 4: Screenshot of the SAFA software and identification of the major software features.
Figure 5: Normalization scheme (Invariant Residue Normalization) applied to a Mg2+ titration of the P4-P6 subdomain of the T. thermophila group I intron.

Similar content being viewed by others

References

  1. Silverman, S.K., Deras, M.L., Woodson, S.A., Scaringe, S.A. & Cech, T.R. Multiple folding pathways for the P4-P6 RNA domain. Biochemistry 39, 12465–12475 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Shcherbakova, I., Gupta, S., Chance, M.R. & Brenowitz, M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J. Mol. Biol. 342, 1431–1442 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. Time-resolved synchrotron X-ray “footprinting,” a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Heilek, G.M., Marusak, R., Meares, C.F. & Noller, H.F. Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc. Natl. Acad. Sci. USA 92, 1113–1116 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. “Footprint” titrations yield valid thermodynamic isotherms. Proc. Natl. Acad. Sci. USA 83, 8462–8466 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inoue, T. & Cech, T.R. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad. Sci. USA 82, 648–652 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilkinson, K.A., Merino, E.J. & Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson, K.A., Merino, E.J. & Weeks, K.M. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts. J. Am. Chem. Soc. 127, 4659–4667 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Badorrek, C.S. & Weeks, K.M. RNA flexibility in the dimerization domain of a gamma retrovirus. Nat. Chem. Biol. 1, 104–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bartley, L.E., Zhuang, X., Das, R., Chu, S. & Herschlag, D. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J. Mol. Biol. 328, 1011–1026 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Russell, R. & Herschlag, D. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. J. Mol. Biol. 308, 839–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Das, R. et al. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J. Mol. Biol. 332, 311–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Takamoto, K. et al. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. J. Mol. Biol. 343, 1195–1206 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res. 34, e48 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279, 1940–1943 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Takamoto, K., Chance, M.R. & Brenowitz, M. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions. Nucleic Acids Res. 32, E119 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vicens, Q., Gooding, A.R., Laederach, A. & Cech, T.R. Local RNA structural changes induced by crystallization are revealed by SHAPE. RNA 13, 536–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laederach, A., Shcherbakova, I., Liang, M., Brenowitz, M. & Altman, R.B. Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule. J. Mol. Biol. 358, 1179–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laederach, A., Shcherbakova, I., Jonikas, M.A., Altman, R.B. & Brenowitz, M. Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding. Proc. Natl. Acad. Sci. USA 104, 7045–7050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc. 2, 2608–2623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shcherbakova, I. & Brenowitz, M. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure. J. Mol. Biol. 354, 483–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Deras, M.L., Brenowitz, M., Ralston, C.Y., Chance, M.R. & Woodson, S.A. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Biochemistry 39, 10975–10985 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Leontis, N.B. et al. The RNA Ontology Consortium: an open invitation to the RNA community. RNA 12, 533–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Uchida, T., He, Q., Ralston, C.Y., Brenowitz, M. & Chance, M.R. Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme. Biochemistry 41, 5799–5806 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health Grants P01-GM66275 to D.H., U54-GM072970 (National Centers for Biomedical Computation) to R.B.A., P41-EB0001979 to M.B., and K99/R00 (GM079953) award to A.L. and the NSF 0443508 for the RNA Ontology Consortium. Q.V. acknowledges the Howard Hughes Medical Institute for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Laederach.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laederach, A., Das, R., Vicens, Q. et al. Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments. Nat Protoc 3, 1395–1401 (2008). https://doi.org/10.1038/nprot.2008.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing