Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Total artificial hearts: past, present, and future

Abstract

A practical artificial heart has been sought for >50 years. An increasing number of people succumb to heart disease each year, but the number of hearts available for transplantation remains small. Early total artificial hearts mimicked the pumping action of the native heart. These positive-displacement pumps could provide adequate haemodynamic support and maintain the human circulation for short periods, but large size and limited durability adversely affected recipients' quality of life. Subsequent research into left ventricular assist devices led to the use of continuous-flow blood pumps with rotating impellers. Researchers have attempted to integrate this technology into modern total artificial hearts with moderate clinical success. The importance of pulsatile circulation remains unclear. Future research is, therefore, needed into positive-displacement and rotary total artificial hearts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three early TAHs.
Figure 2: Sarns-3M positive-displacement total artificial heart (3M Health Care, USA, and Pennsylvania State University, University Park, PA, USA).
Figure 3: Nimbus positive-displacement total artificial heart (Nimbus, USA, and Cleveland Clinic, Cleveland, OH, USA).
Figure 4: AbioCor® positive-displacement total artificial heart (ABIOMED, USA).
Figure 5: Transition of positive-displacement pumps to rotary blood pumps (left ventricular assist devices).
Figure 6: The future of total artificial heart technology.

Similar content being viewed by others

References

  1. Go, A. S. et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014).

    Article  Google Scholar 

  2. Colvin-Adams, M. et al. OPTN/SRTR 2012 annual data report: heart. Am. J. Transplant. 14 (Suppl. 1), 113–138 (2014).

    Article  Google Scholar 

  3. Akutsu, T. & Kolff, W. J. Permanent substitutes for valves and hearts. ASAIO J. 4, 230–234 (1958).

    Google Scholar 

  4. Cooley, D. A. et al. Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am. J. Cardiol. 24, 723–730 (1969).

    Article  CAS  Google Scholar 

  5. Frazier, O. H., Akutsu, T. & Cooley, D. A. Total artificial heart (TAH) utilization in man. ASAIO J. 28, 534–538 (1982).

    CAS  Google Scholar 

  6. Kolff, W. J. Artificial organs—forty years and beyond. Trans. Am. Soc. Artif. Intern. Organs 29, 6–24 (1983).

    CAS  PubMed  Google Scholar 

  7. DeVries, W. C. et al. Clinical use of the total artificial heart. N. Engl. J. Med. 310, 273–278 (1984).

    Article  CAS  Google Scholar 

  8. Leprince, P. et al. Bridge to transplantation with the Jarvik-7 (CardioWest) total artificial heart: a single-center 15-year experience. J. Heart Lung Transplant. 22, 1296–1303 (2003).

    Article  CAS  Google Scholar 

  9. Slepian, M. J. The SynCardia Temporary Total Artificial Heart—evolving clinical role and future status. US Cardiol. 8, 39–46 (2011).

    Google Scholar 

  10. Torregrossa, G. et al. Results with SynCardia total artificial heart beyond 1 year. ASAIO J. 60, 626–634 (2014).

    Article  Google Scholar 

  11. Copeland, J. G. et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N. Engl. J. Med. 351, 859–867 (2004).

    Article  CAS  Google Scholar 

  12. Friedline, K. & Hassinger, P. Total artificial heart freedom driver in a patient with end-stage biventricular heart failure. AANA J. 80, 105–112 (2012).

    PubMed  Google Scholar 

  13. Johnson, K. E., Prieto, M., Joyce, L. D., Pritzker, M. & Emery, R. W. Summary of the clinical use of the Symbion total artificial heart: a registry report. J. Heart Lung Transplant. 11, 103–116 (1992).

    CAS  PubMed  Google Scholar 

  14. Massiello, A. et al. The Cleveland Clinic-Nimbus total artificial heart. J. Thorac. Cardiovasc. Surg. 108, 412–419 (1994).

    CAS  PubMed  Google Scholar 

  15. Tatsumi, E. et al. In vivo evaluation of the National Cardiovascular Center electrohydraulic total artificial heart. Artif. Organs 23, 242–248 (1999).

    Article  CAS  Google Scholar 

  16. Vasku, J. et al. 150-day survival of a calf with a polymethylmethacrylate total artificial heart: TNS-BRNO-II. Artif. Organs 5, 388–400 (1981).

    Article  CAS  Google Scholar 

  17. Vasku, J. & Urbanek, P. Constructional and functional characteristics of recent total artificial heart models TNS Brno VII, VIII, and IX. Artif. Organs 19, 535–543 (1995).

    Article  CAS  Google Scholar 

  18. Rosenberg, G. et al. A roller screw drive for implantable blood pumps. Trans. Am. Soc. Artif. Intern. Organs 28, 123–126 (1982).

    CAS  PubMed  Google Scholar 

  19. Snyder, A. J. et al. An electrically powered total artificial heart: over 1 year survival in the calf. ASAIO J. 38, M707–M712 (1992).

    Article  CAS  Google Scholar 

  20. Weiss, W. J. et al. Steady state hemodynamic and energetic characterization of the Penn State/3M Health Care Total Artificial Heart. ASAIO J. 45, 189–193 (1999).

    Article  CAS  Google Scholar 

  21. Snyder, A. J. et al. In vivo testing of a completely implanted total artificial heart system. ASAIO J. 39, M177–M184 (1993).

    CAS  PubMed  Google Scholar 

  22. Harasaki, H. et al. Progress in Cleveland Clinic-Nimbus total artificial heart development. ASAIO J. 40, M494–M498 (1994).

    Article  CAS  Google Scholar 

  23. Kung, R. T. V. et al. Progress in the development of the ABIOMED Total Artificial Heart. ASAIO J. 41, M245–M248 (1995).

    Article  CAS  Google Scholar 

  24. Kung, R. T. V., Yu, L.-S., Ochs, B. & Frazier, O. H. An atrial hydraulic shunt in a total artificial heart: a balance mechanism for the bronchial shunt. ASAIO J. 39, M213–M217 (1993).

    CAS  PubMed  Google Scholar 

  25. Dowling, R. D. et al. Initial experience with the AbioCor implantable replacement heart system. J. Thorac. Cardiovasc. Surg. 127, 131–141 (2004).

    Article  Google Scholar 

  26. Nose, Y. FDA approval of totally implantable permanent total artificial heart for humanitarian use. Artif. Organs 31, 1–3 (2007).

    Article  Google Scholar 

  27. Frazier, O. H. et al. Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann. Thorac. Surg. 53, 1080–1090 (1992).

    Article  CAS  Google Scholar 

  28. Frazier, O. H. Chronic left ventricular support with a vented electric assist device. Ann. Thorac. Surg. 55, 273–275 (1993).

    Article  CAS  Google Scholar 

  29. Rose, E. et al. The REMATCH trial: rationale, design and end points: Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure. Ann. Thorac. Surg. 67, 723–730 (1999).

    Article  CAS  Google Scholar 

  30. Frazier, O. H. et al. Initial clinical experience with the Jarvik 2000 implantable axial-flow left ventricular assist system. Circulation 105, 2855–2860 (2002).

    Article  CAS  Google Scholar 

  31. Wampler, R. K., Moise, J. C., Frazier, O. H. & Olsen, D. B. In vivo evaluation of a peripheral vascular access axial flow blood pump. ASAIO Trans. 34, 450–454 (1988).

    CAS  PubMed  Google Scholar 

  32. Frazier, O. H. et al. First human use of the Hemopump, a catheter-mounted ventricular assist device. Ann. Thorac. Surg. 49, 299–304 (1990).

    Article  CAS  Google Scholar 

  33. Frazier, O. H. & Leon, P. J. Small pumps for ventricular assistance: progress in mechanical circulatory support. Cardiol. Clin. 25, 553–564 (2007).

    Article  CAS  Google Scholar 

  34. Frazier, O. H. et al. First clinical use of the redesigned HeartMate II Left Ventricular Assist System in the United States. Tex. Heart Inst. J. 31, 157–159 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kirklin, J. K. et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 33, 12–22 (2014).

    Article  Google Scholar 

  36. Salamonsen, R. F., Mason, D. G. & Ayre, P. J. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif. Organs 35, E47–E53 (2011).

    Article  Google Scholar 

  37. Golding, L. R. et al. Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Trans. Am. Soc. Artif. Intern. Organs 26, 251–255 (1980).

    CAS  PubMed  Google Scholar 

  38. Qian, K. X., Pi, K. D., Wang, Y. P. & Zhao, M. J. Toward an implantable impeller total heart. ASAIO Trans. 33, 704–707 (1987).

    CAS  PubMed  Google Scholar 

  39. Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009).

    Article  CAS  Google Scholar 

  40. Frazier, O. H., Tuzun, E., Cohn, W., Tamez, D. & Kadipasaoglu, K. A. Total heart replacement with dual centrifugal ventricular assist devices. ASAIO J. 51, 224–229 (2005).

    Article  CAS  Google Scholar 

  41. Frazier, O. H., Tuzun, E., Cohn, W. E., Conger, J. L. & Kadipasaoglu, K. A. Total heart replacement using dual intracorporeal continuous-flow pumps in a chronic bovine model: a feasibility study. ASAIO J. 52, 145–149 (2006).

    Article  CAS  Google Scholar 

  42. Cohn, W. E. et al. Eight-year experience with a continuous-flow total artificial heart in calves. ASAIO J. 60, 25–30 (2014).

    Article  Google Scholar 

  43. Frazier, O. H., Cohn, W. E., Tuzun, E., Winkler, J. A. & Gregoric, I. D. Continuous-flow total artificial heart supports long-term survival of a calf. Tex. Heart Inst. J. 36, 568–574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Frazier, O. H., Khalil, H. A., Benkowski, R. J. & Cohn, W. E. Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart. J. Heart Lung Transplant. 29, 687–691 (2010).

    Article  CAS  Google Scholar 

  45. Khalil, H. A. et al. Continuous flow total artificial heart: modeling and feedback control in a mock circulatory system. ASAIO J. 54, 249–255 (2008).

    Article  Google Scholar 

  46. Frazier, O. H. & Cohn, W. Continuous-flow total heart replacement device implanted in a 55-year-old man with end-stage heart failure and severe amyloidosis. Tex. Heart Inst. J. 39, 542–546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pirk, J. et al. Total artificial heart support with two continuous-flow ventricular assist devices in a patient with an infiltrating cardiac sarcoma. ASAIO J. 59, 178–180 (2013).

    Article  Google Scholar 

  48. Netuka, I. et al. Novel treatment of an infiltrating cardiac fibrosarcoma. Tex. Heart Inst. J. 41, 248–249 (2014).

    Article  Google Scholar 

  49. Strueber, M., Schmitto, J. D., Kutschka, I. & Haverich, A. Placement of 2 implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J. Thorac. Cardiovasc. Surg. 143, 507–509 (2012).

    Article  Google Scholar 

  50. Timms, D. et al. The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif. Organs 32, 816–819 (2008).

    Article  Google Scholar 

  51. Fukamachi, K. et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in-vitro study. J. Heart Lung Transplant. 29, 13–20 (2010).

    Article  Google Scholar 

  52. Fumoto, H. et al. In vivo acute performance of the Cleveland Clinic self-regulating, continuous-flow total artificial heart. J. Heart Lung Transplant. 29, 21–26 (2010).

    Article  Google Scholar 

  53. Karimov, J. H. et al. In vivo evaluation of the Cleveland Clinic continuous-flow total artificial heart in calves [abstract]. J. Heart Lung Transplant. 33 (Suppl.), S165–S166 (2014).

    Article  Google Scholar 

  54. Greatrex, N., Timms, D., Kurita, N., Palmer, E. & Masuzawa, T. Axial magnetic bearing development for the BiVACOR Rotary BiVAD/TAH. IEEE Trans. Biomed. Eng. 57, 714–721 (2010).

    Article  Google Scholar 

  55. Timms, D., Kurita, N., Greatrex, N. & Masuzawa, T. BiVACOR—a magnetically levitated biventricular artificial heart [abstract]. Presented at the 20th MAGDA Conference.

  56. Timms, D. et al. Initial acute in-vivo animal experience with the BiVACOR Rotary Bi-Ventricular Assist Device [abstract]. Artif. Organs 31, A67 (2007).

    Google Scholar 

  57. Ryan, T. D., Jefferies, J. L., Zafar, F., Lorts, A. & Morales, D. L. S. The evolving role of the total artificial heart in the management of end-stage congenital heart disease and adolescents. ASAIO J. 61, 8–14 (2015).

    Article  CAS  Google Scholar 

  58. Jarvik, R., Westaby, S., Katsumata, T., Pigott, D. & Evans, R. D. LVAD power delivery: a percutaneous approach to avoid infection. Ann. Thorac. Surg. 65, 470–473 (1998).

    Article  CAS  Google Scholar 

  59. Fritschi, A. et al. Image based evaluation of mediastinal constraints for the development of a pulsatile total artificial heart. BioMed. Eng. OnLine 12, 81 (2013).

    Article  Google Scholar 

  60. Pohlmann, A. et al. Experimental validation of the linear drive train for a total artificial heart system. Mechatronics 23, 222–226 (2013).

    Article  Google Scholar 

  61. Laumen, M. et al. A novel total artificial heart for destination therapy: in-vitro and in-vivo study. Biomed. Tech. http://dx.doi.org/10.1515/bmt-2013-4373.

Download references

Author information

Authors and Affiliations

Authors

Contributions

W.E.C. and D.L.T. researched data for the article. All the authors discussed the content of the article, wrote the manuscript, and reviewed drafts before submission.

Corresponding author

Correspondence to William E. Cohn.

Ethics declarations

Competing interests

D.L.T. is the founder of BiVACOR, Inc. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohn, W., Timms, D. & Frazier, O. Total artificial hearts: past, present, and future. Nat Rev Cardiol 12, 609–617 (2015). https://doi.org/10.1038/nrcardio.2015.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing