Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Mechanisms of drug combinations: interaction and network perspectives

A Corrigendum to this article was published on 01 June 2009

Key Points

  • Drug combinations are highly useful for enhanced therapeutics.

  • Understanding of their mechanisms facilitates the discovery of new multicomponent and multi-target therapeutics.

  • This article describes the extensive investigation of the published literature on a large number of drug combinations from interaction and network perspectives, which reveals general and specific modes of action.

Abstract

Understanding the molecular mechanisms underlying synergistic, potentiative and antagonistic effects of drug combinations could facilitate the discovery of novel efficacious combinations and multi-targeted agents. In this article, we describe an extensive investigation of the published literature on drug combinations for which the combination effect has been evaluated by rigorous analysis methods and for which relevant molecular interaction profiles of the drugs involved are available. Analysis of the 117 drug combinations identified reveals general and specific modes of action, and highlights the potential value of molecular interaction profiles in the discovery of novel multicomponent therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways affected by the cisplatin and trastuzumab combination.
Figure 2: Constrasting effects of drug combinations on folate metabolism pathways.

Similar content being viewed by others

References

  1. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    CAS  PubMed  Google Scholar 

  2. Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nature Rev. Drug Discov. 5, 821–834 (2007).

    Google Scholar 

  3. Zheng, C. J. et al. Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol. Rev. 58, 259–279 (2006).

    CAS  PubMed  Google Scholar 

  4. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nature Rev. Drug Discov. 3, 673–683 (2004).

    CAS  Google Scholar 

  5. Ocampo, M. T. et al. Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol. Cell. Biol. 22, 6111–6121 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Papp, B. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    CAS  PubMed  Google Scholar 

  7. Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 1136–1144 (2006). An example of the need to target multiple pathways.

    CAS  PubMed  Google Scholar 

  8. Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001).

    CAS  PubMed  Google Scholar 

  9. Peng, X. H. et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 281, 25903–25914 (2006).

    CAS  PubMed  Google Scholar 

  10. Muller, R. Crosstalk of oncogenic and prostanoid signaling pathways. J. Cancer Res. Clin. Oncol. 130, 429–444 (2004).

    PubMed  Google Scholar 

  11. Massarweh, S. & Schiff, R. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr. Relat. Cancer 13 (Suppl. 1), S15–S24 (2006).

    CAS  PubMed  Google Scholar 

  12. Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007). An example of compensatory activities against drug targeting.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kassouf, W. et al. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res. 65, 10524–10535 (2005).

    CAS  PubMed  Google Scholar 

  14. Christopher M., Overall & Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 6, 227–239 (2006). An overview of a class of targets exhibiting antitarget activities.

    Google Scholar 

  15. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005). An overview of the issues in discovering drug combinations.

    CAS  Google Scholar 

  16. Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005). An overview of the issues in discovering multi-target drugs.

    CAS  PubMed  Google Scholar 

  17. Kitano, H. A robustness-based approach to systems-oriented drug design. Nature Rev. Drug Discov. 6, 202–210 (2007).

    CAS  Google Scholar 

  18. Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nature Rev. Drug Discov. 6, 115–120 (2007). An overview of multiple factors affecting anticancer therapeutics.

    CAS  Google Scholar 

  19. Nelson, H. S. Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. J. Allergy Clin. Immunol. 107, 398–416 (2001).

    CAS  PubMed  Google Scholar 

  20. Gupta, E. K. & Ito, M. K. Lovastatin and extended-release niacin combination product: the first drug combination for the management of hyperlipidemia. Heart Dis. 4, 124–137 (2002).

    CAS  PubMed  Google Scholar 

  21. Larder, B. A., Kemp, S. D. & Harrigan, P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269, 696–699 (1995). An earlier investigation of a possible mechanism of enhancing the efficacy of a drug combination.

    CAS  PubMed  Google Scholar 

  22. Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    CAS  PubMed  Google Scholar 

  23. Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature Rev. Drug Discov. 5, 649–659 (2006). An overview of strategies for optimizing anticancer drug combinations.

    CAS  Google Scholar 

  24. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nature Rev. Drug Discov. 6, 41–55 (2007).

    CAS  Google Scholar 

  25. Graham, B. A., Hammond, D. L. & Proudfit, H. K. Synergistic interactions between two α2-adrenoceptor agonists, dexmedetomidine and ST-91, in two substrains of Sprague-Dawley rats. Pain 85, 135–143 (2000).

    CAS  PubMed  Google Scholar 

  26. Kisliuk, R. L. Synergistic interactions among antifolates. Pharmacol. Ther. 85, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  27. Rand, K. H. & Houck, H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J. Antimicrob. Chemother. 53, 530–532 (2004).

    CAS  PubMed  Google Scholar 

  28. Dryselius, R., Nekhotiaeva, N. & Good, L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J. Antimicrob. Chemother. 56, 97–103 (2005).

    CAS  PubMed  Google Scholar 

  29. Azrak, R. G. et al. The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. Mol. Cancer Ther. 5, 2540–2548 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bell, A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol. Lett. 253, 171–184 (2005).

    CAS  PubMed  Google Scholar 

  31. Robertson, J. G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

    CAS  PubMed  Google Scholar 

  32. Zybarth, G. & Kley, N. Investigating the molecular basis of drug action and response: chemocentric genomics and proteomics. Curr. Drug Targets 7, 387–395 (2006).

    CAS  PubMed  Google Scholar 

  33. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    CAS  PubMed  Google Scholar 

  34. Yao, L. X., Wu, Z. C., Ji, Z. L., Chen, Y. Z. & Chen, X. Internet resources related to drug action and human response: a review. Appl. Bioinformatics 5, 131–139 (2006).

    CAS  PubMed  Google Scholar 

  35. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

    CAS  PubMed  Google Scholar 

  36. Ji, Z. L. et al. Internet resources for proteins associated with drug therapeutic effects, adverse reactions and ADME. Drug Discov. Today 8, 526–529 (2003).

    CAS  PubMed  Google Scholar 

  37. Chen, Y. Z. & Zhi, D. G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43, 217–226 (2001). A demonstration that molecular modelling methods can be explored for in silico search for multiple targets of individual small-molecule drugs.

    CAS  PubMed  Google Scholar 

  38. Paul, N., Kellenberger, E., Bret, G., Muller, P. & Rognan, D. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54, 671–680 (2004).

    CAS  PubMed  Google Scholar 

  39. Cleves, A. E. & Jain, A. N. Robust ligand-based modeling of the biological targets of known drugs. J. Med. Chem. 49, 2921–2938 (2006).

    CAS  PubMed  Google Scholar 

  40. Armour, C. D. & Lum, P. Y. From drug to protein: using yeast genetics for high-throughput target discovery. Curr. Opin. Chem. Biol. 9, 20–24 (2005).

    CAS  PubMed  Google Scholar 

  41. Nettles, J. H. et al. Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J. Med. Chem. 49, 6802–6810 (2006).

    CAS  PubMed  Google Scholar 

  42. Han, L. Y. et al. Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today 12, 304–313 (2007).

    CAS  PubMed  Google Scholar 

  43. Chen, X., Fang, Y., Yao, L., Chen, Y. & Xu, H. Does drug-target have a likeness? Methods Inf. Med. 46, 360–366 (2007).

    PubMed  Google Scholar 

  44. Kumar, N., Afeyan, R., Kim, H. D. & Lauffenburger, D. A. Multi-pathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. Mol. Pharmacol. 73, 1668–1678 (2008). A demonstration that collective measurement of target, off-target and crosstalk sites can better predict therapeutic efficacies.

    CAS  PubMed  Google Scholar 

  45. Xiong, H. & Choe, Y. Dynamical pathway analysis. BMC Syst. Biol. 2, 9 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. Sivachenko, A., Kalinin, A. & Yuryev, A. Pathway analysis for design of promiscuous drugs and selective drug mixtures. Curr. Drug Discov. Technol. 3, 269–277 (2006).

    CAS  PubMed  Google Scholar 

  47. Kim, H. S. & Fay, J. C. Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc. Natl Acad. Sci. USA 104, 19387–19391 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carvalho-Netto, E. F., Markham, C., Blanchard, D. C., Nunes- de-Souza, R. L. & Blanchard, R. J. Physical environment modulates the behavioral responses induced by chemical stimulation of dorsal periaqueductal gray in mice. Pharmacol. Biochem. Behav. 85, 140–147 (2006).

    CAS  PubMed  Google Scholar 

  49. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a Phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

    CAS  PubMed  Google Scholar 

  51. Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006). An overview of the methods for analysing and studying the effects of drug combinations.

    Article  CAS  PubMed  Google Scholar 

  52. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

    CAS  PubMed  Google Scholar 

  53. Dolara, P., Salvadori, M., Capobianco, T. & Torricelli, F. Sister-chromatid exchanges in human lymphocytes induced by dimethoate, omethoate, deltamethrin, benomyl and their mixture. Mutat. Res. 283, 113–118 (1992).

    CAS  PubMed  Google Scholar 

  54. Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R. & Rex, J. H. Combination antifungal therapy. Antimicrob. Agents Chemother. 48, 693–715 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Peterson, J. J. & Novick, S. J. Nonlinear blending: a useful general concept for the assessment of combination drug synergy. J. Recept. Signal. Transduct. Res. 27, 125–146 (2007).

    CAS  PubMed  Google Scholar 

  56. Tallarida, R. J. Interactions between drugs and occupied receptors. Pharmacol. Ther. 113, 197–209 (2007).

    CAS  PubMed  Google Scholar 

  57. Jonker, D. M., Visser, S. A., van der Graaf, P. H., Voskuyl, R. A. & Danhof, M. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol. Ther. 106, 1–18 (2005).

    CAS  PubMed  Google Scholar 

  58. Peters, G. J. et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol. Ther. 87, 227–253 (2000).

    CAS  PubMed  Google Scholar 

  59. Barrera, N. P., Morales, B., Torres, S. & Villalon, M. Principles: mechanisms and modeling of synergism in cellular responses. Trends Pharmacol. Sci. 26, 526–532 (2005).

    CAS  PubMed  Google Scholar 

  60. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 32, D35–D40 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawakami, H. et al. Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells. Int. J. Cancer 120, 1811–1820 (2007).

    CAS  PubMed  Google Scholar 

  62. Lin, X., Kim, H. K. & Howell, S. B. The role of DNA mismatch repair in cisplatin mutagenicity. J. Inorg. Biochem. 77, 89–93 (1999).

    CAS  PubMed  Google Scholar 

  63. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

    CAS  PubMed  Google Scholar 

  64. van Waardenburg, R. C. et al. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. J. Biol. Chem. 279, 54502–54509 (2004).

    CAS  PubMed  Google Scholar 

  65. Grimaldi, K. A., McAdam, S. R., Souhami, R. L. & Hartley, J. A. DNA damage by anti-cancer agents resolved at the nucleotide level of a single copy gene: evidence for a novel binding site for cisplatin in cells. Nucleic Acids Res. 22, 2311–2317 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bassett, E. et al. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Biochemistry 42, 14197–14206 (2003).

    CAS  PubMed  Google Scholar 

  67. Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

    CAS  PubMed  Google Scholar 

  68. D'Incalci, M. et al. The combination of yondelis and cisplatin is synergistic against human tumor xenografts. Eur. J. Cancer 39, 1920–1926 (2003).

    CAS  PubMed  Google Scholar 

  69. Marco, E. & Gago, F. DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands. Mol. Pharmacol. 68, 1559–1567 (2005).

    CAS  PubMed  Google Scholar 

  70. Dziegielewska, B., Kowalski, D. & Beerman, T. A. SV40 DNA replication inhibition by the monofunctional DNA alkylator Et743. Biochemistry 43, 14228–14237 (2004).

    CAS  PubMed  Google Scholar 

  71. Dai, Z., Liu, S., Marcucci, G. & Sadee, W. 5-Aza-2′-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). Biochem. Biophys. Res. Commun. 351, 455–461 (2006).

    CAS  PubMed  Google Scholar 

  72. Georgakis, G. V., Li, Y., Rassidakis, G. Z., Medeiros, L. J. & Younes, A. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp. Hematol. 34, 1670–1679 (2006).

    CAS  PubMed  Google Scholar 

  73. Soja, P. J., Pang, W., Taepavarapruk, N. & McErlane, S. A. Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. Sleep 24, 18–25 (2001).

    CAS  PubMed  Google Scholar 

  74. Staud, R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. Curr. Rheumatol. Rep. 4, 299–305 (2002).

    PubMed  Google Scholar 

  75. Tham, S. M., Angus, J. A., Tudor, E. M. & Wright, C. E. Synergistic and additive interactions of the cannabinoid agonist CP55, 940 with μ opioid receptor and α2-adrenoceptor agonists in acute pain models in mice. Br. J. Pharmacol. 144, 875–884 (2005).

    CAS  PubMed  Google Scholar 

  76. Malonga, H., Neault, J. F., Diamantoglou, S. & Tajmir-Riahi, H. A. Taxol anticancer activity and DNA binding. Mini Rev. Med. Chem. 5, 307–311 (2005).

    CAS  PubMed  Google Scholar 

  77. Sintchak, M. D. et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85, 921–930 (1996).

    PubMed  Google Scholar 

  78. Marcus, A. I. et al. The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res. 65, 3883–3893 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).

    CAS  PubMed  Google Scholar 

  80. Lai, G. H., Zhang, Z. & Sirica, A. E. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Mol. Cancer Ther. 2, 265–271 (2003).

    CAS  PubMed  Google Scholar 

  81. Alloza, I., Baxter, A., Chen, Q., Matthiesen, R. & Vandenbroeck, K. Celecoxib inhibits interleukin-12 αβ and β2 folding and secretion by a novel COX2-independent mechanism involving chaperones of the endoplasmic reticulum. Mol. Pharmacol. 69, 1579–1587 (2006).

    CAS  PubMed  Google Scholar 

  82. Jayasuriya, H., Koonchanok, N. M., Geahlen, R. L., McLaughlin, J. L. & Chang, C. J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J. Nat. Prod. 55, 696–698 (1992).

    CAS  PubMed  Google Scholar 

  83. Olsen, B. B., Bjorling-Poulsen, M. & Guerra, B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action. Int. J. Biochem. Cell Biol. 39, 227–237 (2007).

    CAS  PubMed  Google Scholar 

  84. Cottagnoud, P., Cottagnoud, M. & Tauber, M. G. Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob. Agents Chemother. 47, 144–147 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshizawa, S., Fourmy, D. & Puglisi, J. D. Structural origins of gentamicin antibiotic action. EMBO J. 17, 6437–6448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cegelski, L. et al. Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in Staphylococcus aureus. Biochemistry 41, 13053–13058 (2002).

    CAS  PubMed  Google Scholar 

  87. Watanakunakorn, C. Mode of action and in-vitro activity of vancomycin. J. Antimicrob. Chemother. 14 (Suppl. D), 7–18 (1984).

    CAS  PubMed  Google Scholar 

  88. Goddard, J. et al. Endothelin A receptor antagonism and angiotensin-converting enzyme inhibition are synergistic via an endothelin B receptor-mediated and nitric oxide-dependent mechanism. J. Am. Soc. Nephrol. 15, 2601–2610 (2004).

    CAS  PubMed  Google Scholar 

  89. Verhaar, M. C. et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97, 752–756 (1998).

    CAS  PubMed  Google Scholar 

  90. Moridaira, K. et al. ACE inhibition increases expression of the ETB receptor in kidneys of mice with unilateral obstruction. Am. J. Physiol. Renal Physiol. 284, F209–F217 (2003).

    CAS  PubMed  Google Scholar 

  91. Pollock, D. M., Keith, T. L. & Highsmith, R. F. Endothelin receptors and calcium signaling. Faseb J. 9, 1196–1204 (1995).

    CAS  PubMed  Google Scholar 

  92. Touma, S. E. et al. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin. Cancer Res. 11, 3558–3566 (2005).

    CAS  PubMed  Google Scholar 

  93. Meco, D. et al. Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies. Cancer Chemother. Pharmacol. 52, 131–138 (2003).

    CAS  PubMed  Google Scholar 

  94. Kellogg, G. E., Scarsdale, J. N. & Fornari, F. A. Jr. Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides. Nucleic Acids Res. 26, 4721–4732 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zewail-Foote, M. et al. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem. Biol. 8, 1033–1049 (2001).

    CAS  PubMed  Google Scholar 

  96. Baruah, H., Barry, C. G. & Bierbach, U. Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr. Top. Med. Chem. 4, 1537–1549 (2004).

    CAS  PubMed  Google Scholar 

  97. Nickels, T. J. et al. Effect of theophylline and aminophylline on transmitter release at the mammalian neuromuscular junction is not mediated by cAMP. Clin. Exp. Pharmacol. Physiol. 33, 465–470 (2006).

    CAS  PubMed  Google Scholar 

  98. Barrington, W. W., Jacobson, K. A. & Stiles, G. L. Demonstration of distinct agonist and antagonist conformations of the A1 adenosine receptor. J. Biol. Chem. 264, 13157–13164 (1989).

    CAS  PubMed  Google Scholar 

  99. Pelicano, H. et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia 20, 610–619 (2006).

    CAS  PubMed  Google Scholar 

  100. Yao, Q., Weigel, B. & Kersey, J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin. Cancer Res. 13, 1591–1600 (2007).

    CAS  PubMed  Google Scholar 

  101. Thanou, M., Verhoef, J. C. & Junginger, H. E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126 (2001).

    CAS  PubMed  Google Scholar 

  102. Ciccolini, J. et al. Enhanced antitumor activity of 5-fluorouracil in combination with 2′-deoxyinosine in human colorectal cell lines and human colon tumor xenografts. Clin. Cancer Res. 6, 1529–1535 (2000).

    CAS  PubMed  Google Scholar 

  103. Matsuura, M., Nakazawa, H., Hashimoto, T. & Mitsuhashi, S. Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillin-resistant strains. Antimicrob. Agents Chemother. 17, 908–911 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nasher, M. A. & Hay, R. J. Synergy of antibiotics against Streptomyces somaliensis isolates in vitro. J. Antimicrob. Chemother. 41, 281–284 (1998).

    CAS  PubMed  Google Scholar 

  105. Cohen, S. G. & Criep, L. H. Observations on the symptomatic treatment of chronic vascular headache with cafergone (ergotamine tartrate and caffeine). N. Engl. J. Med. 241, 896–900 (1949).

    CAS  PubMed  Google Scholar 

  106. Stein, E. A. et al. Efficacy and tolerability of low-dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidemia: a prospective trial. J. Cardiovasc. Pharmacol. Ther. 1, 107–116 (1996).

    CAS  PubMed  Google Scholar 

  107. Loehrer, P. J. Sr., Einhorn, L. H. & Greco, F. A. Cisplatin plus etoposide in small cell lung cancer. Semin. Oncol. 15, 2–8 (1988).

    PubMed  Google Scholar 

  108. Normanno, N. et al. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol. 207, 420–427 (2006).

    CAS  PubMed  Google Scholar 

  109. Fletcher, D., Benoist, J. M., Gautron, M. & Guilbaud, G. Isobolographic analysis of interactions between intravenous morphine, propacetamol, and diclofenac in carrageenin-injected rats. Anesthesiology 87, 317–326 (1997).

    CAS  PubMed  Google Scholar 

  110. Pace, E. et al. Synergistic effects of fluticasone propionate and salmeterol on in vitro T-cell activation and apoptosis in asthma. J. Allergy Clin. Immunol. 114, 1216–1223 (2004).

    CAS  PubMed  Google Scholar 

  111. Greenwood, D. & O'Grady, F. Activity and interaction of trimethoprim and sulphamethoxazole against Escherichia coli. J. Clin. Pathol. 29, 162–166 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Barnes, P. J. Scientific rationale for inhaled combination therapy with long-acting β2-agonists and corticosteroids. Eur. Respir. J. 19, 182–191 (2002).

    CAS  PubMed  Google Scholar 

  113. Fernandes, D. J. & Bertino, J. R. 5-fluorouracil-methotrexate synergy: enhancement of 5-fluorodeoxyridylate binding to thymidylate synthase by dihydropteroylpolyglutamates. Proc. Natl Acad. Sci. USA 77, 5663–5667 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dinos, G. P., Connell, S. R., Nierhaus, K. H. & Kalpaxis, D. L. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Mol. Pharmacol. 63, 617–623 (2003).

    CAS  PubMed  Google Scholar 

  115. Schwieler, L., Erhardt, S., Erhardt, C. & Engberg, G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis — opposite actions by COX-1 and COX-2 isoforms. J. Neural Transm. 112, 863–872 (2005).

    CAS  PubMed  Google Scholar 

  116. Ouellet, M. & Percival, M. D. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch. Biochem. Biophys. 387, 273–280 (2001).

    CAS  PubMed  Google Scholar 

  117. Brogden, R. N. et al. Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. Drugs 22, 337–362 (1981).

    CAS  PubMed  Google Scholar 

  118. Voeller, D. et al. Interaction of Pneumocystis carinii dihydropteroate synthase with sulfonamides and diaminodiphenyl sulfone (dapsone). J. Infect. Dis. 169, 456–459 (1994).

    CAS  PubMed  Google Scholar 

  119. Brumfitt, W. & Hamilton-Miller, J. M. Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines. J. Chemother. 5, 465–469 (1993).

    CAS  PubMed  Google Scholar 

  120. Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).

    CAS  PubMed  Google Scholar 

  121. Maccubbin, A. E., Caballes, L., Riordan, J. M., Huang, D. H. & Gurtoo, H. L. A cyclophosphamide/DNA phosphoester adduct formed in vitro and in vivo. Cancer Res. 51, 886–892 (1991).

    CAS  PubMed  Google Scholar 

  122. Anderson, J. R., Drehsen, G. & Pitman, I. H. Effect of caffeine on ergotamine absorption from rat small intestine. J. Pharm. Sci. 70, 651–657 (1981).

    CAS  PubMed  Google Scholar 

  123. Plosker, G. L. & McTavish, D. Simvastatin. A reappraisal of its pharmacology and therapeutic efficacy in hypercholesterolaemia. Drugs 50, 334–363 (1995).

    CAS  PubMed  Google Scholar 

  124. Ganter, B. & Giroux, C. N. Emerging applications of network and pathway analysis in drug discovery and development. Curr. Opin. Drug Discov. Devel. 11, 86–94 (2008).

    CAS  PubMed  Google Scholar 

  125. Eckstein, N. et al. Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J. Biol. Chem. 283, 739–750 (2008).

    CAS  PubMed  Google Scholar 

  126. Ganter, B., Zidek, N., Hewitt, P. R., Muller, D. & Vladimirova, A. Pathway analysis tools and toxicogenomics reference databases for risk assessment. Pharmacogenomics 9, 35–54 (2008).

    CAS  PubMed  Google Scholar 

  127. Apic, G., Ignjatovic, T., Boyer, S. & Russell, R. B. Illuminating drug discovery with biological pathways. FEBS Lett. 579, 1872–1877 (2005).

    CAS  PubMed  Google Scholar 

  128. Davidov, E., Holland, J., Marple, E. & Naylor, S. Advancing drug discovery through systems biology. Drug Discov. Today 8, 175–183 (2003).

    CAS  PubMed  Google Scholar 

  129. Huang, S. Rational drug discovery: what can we learn from regulatory networks? Drug Discov. Today 7, S163–S169 (2002).

    CAS  PubMed  Google Scholar 

  130. Nahta, R. & Esteva, F. J. Trastuzumab: triumphs and tribulations. Oncogene 26, 3637–3643 (2007).

    CAS  PubMed  Google Scholar 

  131. Pietras, R. J., Pegram, M. D., Finn, R. S., Maneval, D. A. & Slamon, D. J. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 17, 2235–2249 (1998).

    CAS  PubMed  Google Scholar 

  132. Le, X. F. et al. Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase–AKT signaling. J. Biol. Chem. 280, 2092–2104 (2005).

    CAS  PubMed  Google Scholar 

  133. Lee, S. et al. Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res. 62, 5703–5710 (2002).

    CAS  PubMed  Google Scholar 

  134. Haller, D. G. Trimetrexate: experience with solid tumors. Semin. Oncol. 24, (Suppl. 18), S18–S76 (1997).

    CAS  PubMed  Google Scholar 

  135. Humeniuk, R. et al. Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-induced cytotoxicity. Leukemia 21, 2399–2405 (2007).

    CAS  PubMed  Google Scholar 

  136. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006). A demonstration that pathway gene expression signatures can be identified for analysing multiple pathway deregulation by diseases and their regulation by drugs.

    CAS  PubMed  Google Scholar 

  137. Cheok, M. H. & Evans, W. E. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nature Rev. Cancer 6, 117–129 (2006).

    CAS  Google Scholar 

  138. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gerhold, D. L., Jensen, R. V. & Gullans, S. R. Better therapeutics through microarrays. Nature Genet. 32, 547–551 (2002).

    CAS  PubMed  Google Scholar 

  140. Rickardson, L. et al. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br. J. Cancer 93, 483–492 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. den Boer, M. L. & Pieters, R. Microarray-based identification of new targets for specific therapies in pediatric leukemia. Curr. Drug Targets. 8, 761–764 (2007).

    CAS  PubMed  Google Scholar 

  142. Wirth, G. J., Schandelmaier, K., Smith, V., Burger, A. M. & Fiebig, H. H. Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: expression patterns of cathepsin B and the transferrin receptor. Oncology 71, 86–94 (2006).

    CAS  PubMed  Google Scholar 

  143. Andre, F., Mazouni, C., Hortobagyi, G. N. & Pusztai, L. DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. Biochim. Biophys. Acta 1766, 197–204 (2006).

    CAS  PubMed  Google Scholar 

  144. Chaney, S. G. et al. Protein interactions with platinum-DNA adducts: from structure to function. J. Inorg. Biochem. 98, 1551–1559 (2004).

    CAS  PubMed  Google Scholar 

  145. Faivre, S., Chan, D., Salinas, R., Woynarowska, B. & Woynarowski, J. M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol. 66, 225–237 (2003).

    CAS  PubMed  Google Scholar 

  146. Koizumi, F. et al. Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int. J. Cancer 108, 464–472 (2004).

    CAS  PubMed  Google Scholar 

  147. Tanaka, R. et al. Synergistic interaction between oxaliplatin and SN-38 in human gastric cancer cell lines in vitro. Oncol. Rep. 14, 683–688 (2005).

    CAS  PubMed  Google Scholar 

  148. Kobayashi, S. et al. Singly-linked catenation and knotting of cisplatin-DNA adduct by DNA topoisomerase I. Nucleic Acids Symp. Ser. 29, 137–138 (1993).

    CAS  Google Scholar 

  149. Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y. & Shimamura, T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1737–1742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bickle, M., Delley, P. A., Schmidt, A. & Hall, M. N. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo J. 17, 2235–2245 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Abal, M., Andreu, J. M. & Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets. 3, 193–203 (2003).

    CAS  PubMed  Google Scholar 

  152. Ganansia-Leymarie, V., Bischoff, P., Bergerat, J. P. & Holl, V. Signal transduction pathways of taxanes-induced apoptosis. Curr. Med. Chem. Anticancer Agents 3, 291–306 (2003).

    CAS  PubMed  Google Scholar 

  153. Park, S. J. et al. Taxol induces caspase-10-dependent apoptosis. J. Biol. Chem. 279, 51057–51067 (2004).

    CAS  PubMed  Google Scholar 

  154. Okano, J., Nagahara, T., Matsumoto, K. & Murawaki, Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol. Rep. 17, 1195–1200 (2007).

    CAS  PubMed  Google Scholar 

  155. Zhang, W., Lee, J. C., Kumar, S. & Gowen, M. ERK pathway mediates the activation of Cdk2 in IGF-1-induced proliferation of human osteosarcoma MG-63 cells. J. Bone Miner. Res. 14, 528–535 (1999).

    CAS  PubMed  Google Scholar 

  156. Bacus, S. S. et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155 (2001).

    CAS  PubMed  Google Scholar 

  157. Pennati, M. et al. Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol. Cancer Ther. 4, 1328–1337 (2005).

    CAS  PubMed  Google Scholar 

  158. Lee, E. J., Whang, J. H., Jeon, N. K. & Kim, J. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral squamous carcinoma cells via p53 independent and MMP, uPAR dependent mechanism. Ann. NY Acad. Sci. 1095, 113–128 (2007).

    CAS  PubMed  Google Scholar 

  159. Fanucchi, M. & Khuri, F. R. Taxanes in the treatment of non-small cell lung cancer. Treat. Respir. Med. 5, 181–191 (2006).

    CAS  PubMed  Google Scholar 

  160. Takabatake, D. et al. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231). Int. J. Cancer 120, 181–188 (2007).

    CAS  PubMed  Google Scholar 

  161. Funakoshi, M., Tago, K., Sonoda, Y., Tominaga, S. & Kasahara, T. A MEK inhibitor, PD98059 enhances IL-1-induced NF-κB activation by the enhanced and sustained degradation of IkappaBalpha. Biochem. Biophys. Res. Commun. 283, 248–254 (2001).

    CAS  PubMed  Google Scholar 

  162. Roberts, P. J. & Der, C. J. Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007).

    CAS  PubMed  Google Scholar 

  163. De Clercq, E. HIV-1-specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med. Res. Rev. 13, 229–258 (1993).

    CAS  PubMed  Google Scholar 

  164. Fattorusso, C. et al. Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J. Med. Chem. 48, 7153–7165 (2005).

    CAS  PubMed  Google Scholar 

  165. Cruchaga, C., Odriozola, L., Andreola, M., Tarrago-Litvak, L. & Martinez-Irujo, J. J. Inhibition of phosphorolysis catalyzed by HIV-1 reverse transcriptase is responsible for the synergy found in combinations of 3′-azido-3′-deoxythymidine with nonnucleoside inhibitors. Biochemistry 44, 3535–3546 (2005).

    CAS  PubMed  Google Scholar 

  166. Rigourd, M., Ehresmann, C., Parniak, M. A., Ehresmann, B. & Marquet, R. Primer unblocking and rescue of DNA synthesis by azidothymidine (AZT)-resistant HIV-1 reverse transcriptase: comparison between initiation and elongation of reverse transcription and between (−) and (+) strand DNA synthesis. J. Biol. Chem. 277, 18611–18618 (2002).

    CAS  PubMed  Google Scholar 

  167. Gajate, C. & Mollinedo, F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280, 11641–11647 (2005).

    CAS  PubMed  Google Scholar 

  168. Cuadrado, A., Gonzalez, L., Suarez, Y., Martinez, T. & Munoz, A. JNK activation is critical for Aplidin-induced apoptosis. Oncogene 23, 4673–4680 (2004).

    CAS  PubMed  Google Scholar 

  169. Biscardi, M. et al. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann. Oncol. 16, 1667–1674 (2005).

    CAS  PubMed  Google Scholar 

  170. Abdel-Aziz, W., Jiang, H. Y., Hickey, R. J. & Malkas, L. H. Ara-C affects formation of cancer cell DNA synthesome replication intermediates. Cancer Chemother. Pharmacol. 45, 312–319 (2000).

    CAS  PubMed  Google Scholar 

  171. de Vries, J. F., Falkenburg, J. H., Willemze, R. & Barge, R. M. The mechanisms of Ara-C-induced apoptosis of resting B-chronic lymphocytic leukemia cells. Haematologica 91, 912–919 (2006).

    CAS  PubMed  Google Scholar 

  172. Hajra, K. M. & Liu, J. R. Apoptosome dysfunction in human cancer. Apoptosis 9, 691–704 (2004).

    CAS  PubMed  Google Scholar 

  173. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Di Francesco, A. M. et al. The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. Biochem. Pharmacol. 73, 643–655 (2007).

    CAS  PubMed  Google Scholar 

  175. Zanchi, C., Zuco, V., Lanzi, C., Supino, R. & Zunino, F. Modulation of survival signaling pathways and persistence of the genotoxic stress as a basis for the synergistic interaction between the atypical retinoid ST1926 and the epidermal growth factor receptor inhibitor ZD1839. Cancer Res. 65, 2364–2372 (2005).

    CAS  PubMed  Google Scholar 

  176. Zwang, Y. & Yarden, Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195–4206 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Reffelmann, T. & Kloner, R. A. Cardiovascular effects of phosphodiesterase 5 inhibitors. Curr. Pharm. Des. 12, 3485–3494 (2006).

    CAS  PubMed  Google Scholar 

  178. Walch, L. et al. Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br. J. Pharmacol. 126, 859–866 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Parkinson, P. A., Parfenova, H. & Leffler, C. W. Phospholipase C activation by prostacyclin receptor agonist in cerebral microvascular smooth muscle cells. Proc. Soc. Exp. Biol. Med. 223, 53–58 (2000).

    CAS  PubMed  Google Scholar 

  180. Ashrafpour, H. et al. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am. J. Physiol. Heart Circ. Physiol. 286, H946–H954 (2004).

    CAS  PubMed  Google Scholar 

  181. Della Bella, S. et al. Novel mode of action of iloprost: in vitro down-regulation of endothelial cell adhesion molecules. Prostaglandins 65, 73–83 (2001).

    CAS  Google Scholar 

  182. Ghofrani, H. A. et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann. Intern. Med. 136, 515–522 (2002).

    CAS  PubMed  Google Scholar 

  183. Mullershausen, F., Lange, A., Mergia, E., Friebe, A. & Koesling, D. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol. Pharmacol. 69, 1969–1974 (2006).

    CAS  PubMed  Google Scholar 

  184. Yamaki, F. et al. MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 364, 538–550 (2001).

    CAS  PubMed  Google Scholar 

  185. Nelson, L. E. et al. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436 (2003).

    CAS  PubMed  Google Scholar 

  186. Davis, M. et al. Spinal vs. supraspinal sites of action of the α2-adrenergic agonists clonidine and ST-91 on the acoustic startle reflex. Pharmacol. Biochem. Behav. 33, 233–240 (1989).

    CAS  PubMed  Google Scholar 

  187. Philipp, M., Brede, M. & Hein, L. Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R287–R295 (2002).

    CAS  PubMed  Google Scholar 

  188. Gan, L. et al. The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. Biochemistry 42, 857–863 (2003).

    CAS  PubMed  Google Scholar 

  189. Shimmura, H., Tanabe, K., Habiro, K., Abe, R. & Toma, H. Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model. Transplantation 82, 175–179 (2006).

    CAS  PubMed  Google Scholar 

  190. Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents 2, 1–17 (2002).

    CAS  PubMed  Google Scholar 

  191. Madiraju, C. et al. Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44, 15053–15063 (2005).

    CAS  PubMed  Google Scholar 

  192. Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res. 64, 4957–4964 (2004).

    CAS  PubMed  Google Scholar 

  193. Black, D. M. The development of combination drugs for atherosclerosis. Curr. Atheroscler. Rep. 5, 29–32 (2003).

    PubMed  Google Scholar 

  194. Mondimore, F. M., Fuller, G. A. & DePaulo, J. R. Jr. Drug combinations for mania. J. Clin. Psychiatry 64 (Suppl. 5), 25–31 (2003).

    CAS  PubMed  Google Scholar 

  195. Curatolo, M. & Sveticic, G. Drug combinations in pain treatment: a review of the published evidence and a method for finding the optimal combination. Best Pract. Res. Clin. Anaesthesiol. 16, 507–519 (2002).

    CAS  PubMed  Google Scholar 

  196. Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953).

    CAS  PubMed  Google Scholar 

  197. Guignard, B., Entenza, J. M. & Moreillon, P. Beta-lactams against methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharmacol. 5, 479–489 (2005).

    CAS  PubMed  Google Scholar 

  198. Braga, P. C., Ricci, D. & Dal Sasso, M. Daptomycin morphostructural damage in Bacillus cereus visualized by atomic force microscopy. J. Chemother. 14, 336–341 (2002).

    CAS  PubMed  Google Scholar 

  199. Paul, T. R. et al. Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative. J. Bacteriol. 177, 3631–3640 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Nishikawa, K. Angiotensin AT1 receptor antagonism and protection against cardiovascular end-organ damage. J. Hum. Hypertens. 12, 301–309 (1998).

    CAS  PubMed  Google Scholar 

  201. Rokoss, M. J. & Teo, K. K. Ramipril in the treatment of vascular diseases. Expert Opin. Pharmacother. 6, 1911–1919 (2005).

    CAS  PubMed  Google Scholar 

  202. Carlsson, L. & Abrahamsson, T. Ramiprilat attenuates the local release of noradrenaline in the ischemic myocardium. Eur. J. Pharmacol. 166, 157–164 (1989).

    CAS  PubMed  Google Scholar 

  203. Raasch, W., Johren, O., Schwartz, S., Gieselberg, A. & Dominiak, P. Combined blockade of AT1-receptors and ACE synergistically potentiates antihypertensive effects in SHR. J. Hypertens. 22, 611–618 (2004).

    CAS  PubMed  Google Scholar 

  204. Alves, D. P. et al. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Eur. J. Pharmacol. 489, 59–65 (2004).

    CAS  PubMed  Google Scholar 

  205. Russ, U., Lange, U., Loffler-Walz, C., Hambrock, A. & Quast, U. Binding and effect of K ATP channel openers in the absence of Mg2+. Br. J. Pharmacol. 139, 368–380 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Soares, A. C. & Duarte, I. D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K+ channels in the rat PGE2-induced hyperalgesic paw. Br. J. Pharmacol. 134, 127–131 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Deka, D. K. & Brading, A. F. Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism. Eur. J. Pharmacol. 492, 13–19 (2004).

    CAS  PubMed  Google Scholar 

  208. Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol. 68, 549–561 (2004).

    CAS  PubMed  Google Scholar 

  209. Campagna-Slater, V. & Weaver, D. F. Anaesthetic binding sites for etomidate and propofol on a GABAA receptor model. Neurosci. Lett. 418, 28–33 (2007).

    CAS  PubMed  Google Scholar 

  210. Nishikawa, K. & Harrison, N. L. The actions of sevoflurane and desflurane on the γ-aminobutyric acid receptor type A: effects of TM2 mutations in the alpha and beta subunits. Anesthesiology 99, 678–684 (2003).

    CAS  PubMed  Google Scholar 

  211. Harris, R. S., Lazar, O., Johansen, J. W. & Sebel, P. S. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology 104, 1170–1175 (2006).

    CAS  PubMed  Google Scholar 

  212. Sigel, E. Mapping of the benzodiazepine recognition site on GABAA receptors. Curr. Top. Med. Chem. 2, 833–839 (2002).

    CAS  PubMed  Google Scholar 

  213. Ono, S., Muratani, T. & Matsumoto, T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob. Agents Chemother. 49, 2954–2958 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Fuda, C., Suvorov, M., Vakulenko, S. B. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).

    CAS  PubMed  Google Scholar 

  215. Krishna, S., Woodrow, C. J., Staines, H. M., Haynes, R. K. & Mercereau-Puijalon, O. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol. Med. 12, 200–205 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Cui, L., Miao, J. & Cui, L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob. Agents Chemother. 51, 488–494 (2007).

    CAS  PubMed  Google Scholar 

  217. Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P. & Padmanaban, G. Curcumin–artemisinin combination therapy for malaria. Antimicrob. Agents Chemother. 50, 1859–1860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Drew, R. H. & Gallis, H. A. Azithromycin — spectrum of activity, pharmacokinetics, and clinical applications. Pharmacotherapy 12, 161–173 (1992).

    CAS  PubMed  Google Scholar 

  219. Fernandez-Cuenca, F., Martinez-Martinez, L., Pascual, A. & Perea, E. J. In vitro activity of azithromycin in combination with amikacin, ceftazidime, ciprofloxacin or imipenem against clinical isolates of Acinobacter baumannii. Chemotherapy 49, 24–26 (2003).

    CAS  PubMed  Google Scholar 

  220. Furuya, R. et al. In vitro synergistic effects of double combinations of β-lactams and azithromycin against clinical isolates of Neisseria gonorrhoeae. J. Infect. Chemother. 12, 172–176 (2006).

    CAS  PubMed  Google Scholar 

  221. Huang, W. et al. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. Biophys. J. 83, 3245–3255 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Walsh, T. J. et al. New targets and delivery systems for antifungal therapy. Med. Mycol. 38 (Suppl. 1), 335–347 (2000).

    CAS  PubMed  Google Scholar 

  223. Meletiadis, J. et al. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro and in vivo correlation. J. Infect. Dis. 194, 1008–1018 (2006).

    CAS  PubMed  Google Scholar 

  224. Carrillo-Munoz, A. J., Giusiano, G., Ezkurra, P. A. & Quindos, G. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter. 19, 130–139 (2006).

    CAS  PubMed  Google Scholar 

  225. Narishetty, S. T. & Panchagnula, R. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control. Release 102, 59–70 (2005).

    CAS  PubMed  Google Scholar 

  226. Narishetty, S. T. & Panchagnula, R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J. Control. Release 95, 367–379 (2004).

    CAS  PubMed  Google Scholar 

  227. Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236 (2004).

    CAS  PubMed  Google Scholar 

  228. Fujino, H. et al. Studies on the interaction between fibrates and statins using human hepatic microsomes. Arzneimittelforschung 53, 701–707 (2003).

    CAS  PubMed  Google Scholar 

  229. Prueksaritanont, T. et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab. Dispos. 30, 1280–1287 (2002).

    CAS  PubMed  Google Scholar 

  230. Minotti, G. et al. Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin. Cancer Res. 7, 1511–1515 (2001).

    CAS  PubMed  Google Scholar 

  231. Menez, C., Legrand, P., Rosilio, V., Lesieur, S. & Barratt, G. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Mol. Pharm. 4, 281–288 (2007).

    CAS  PubMed  Google Scholar 

  232. Menez, C. et al. Interaction between miltefosine and amphotericin B: consequences for their activities towards intestinal epithelial cells and Leishmania donovani promastigotes in vitro. Antimicrob. Agents Chemother. 50, 3793–3800 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Zicca, A. et al. Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats. Eur. J. Pharmacol. 442, 265–272 (2002).

    CAS  PubMed  Google Scholar 

  234. Kaminsky, L. S. & Zhang, Z. Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67–74 (1997).

    CAS  PubMed  Google Scholar 

  235. Ngui, J. S. et al. In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4′- and 10-hydroxywarfarin. Drug Metab. Dispos. 29, 877–886 (2001).

    CAS  PubMed  Google Scholar 

  236. Rolinson, G. N. Effect of β-lactam antibiotics on bacterial cell growth rate. J. Gen. Microbiol. 120, 317–323 (1980).

    CAS  PubMed  Google Scholar 

  237. Cole, M. Biochemistry and action of clavulanic acid. Scott. Med. J. 27, S10–S16 (1982).

    PubMed  Google Scholar 

  238. Nials, A. T., Sumner, M. J., Johnson, M. & Coleman, R. A. Investigations into factors determining the duration of action of the β2-adrenoceptor agonist, salmeterol. Br. J. Pharmacol. 108, 507–515 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Mamani-Matsuda, M. et al. Long-acting β2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells. Br. J. Haematol. 124, 141–150 (2004).

    CAS  PubMed  Google Scholar 

  240. Meltzer, E. O. The pharmacological basis for the treatment of perennial allergic rhinitis and non-allergic rhinitis with topical corticosteroids. Allergy 52, 33–40 (1997).

    CAS  PubMed  Google Scholar 

  241. Zhang, X., Moilanen, E. & Kankaanranta, H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur. J. Pharmacol. 406, 325–332 (2000).

    CAS  PubMed  Google Scholar 

  242. Meekins, C. V., Sullivan, T. J. & Gruchalla, R. S. Immunochemical analysis of sulfonamide drug allergy: identification of sulfamethoxazole-substituted human serum proteins. J. Allergy Clin. Immunol. 94, 1017–1024 (1994).

    CAS  PubMed  Google Scholar 

  243. Lowe, P. A. & Malcolm, A. D. Rifampicin binding as a probe for subunit interactions in Escherchia coli RNA polymerase. Biochim. Biophys. Acta 454, 129–137 (1976).

    CAS  PubMed  Google Scholar 

  244. Lee-Huang, S., Lee, H. & Ochoa, S. Inhibition of polypeptide chain initiation in Escherichia coli by elongation factor G. Proc. Natl Acad. Sci. USA 71, 2928–2931 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Biebricher, C. K. & Druminski, M. Inhibition of RNA polymerase activity by the Escherichia coli protein biosynthesis elongation factor Ts. Proc. Natl Acad. Sci. USA 77, 866–869 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Rojo, F., Ayala, J. A., De Pedro, M. A. & Vazquez, D. Analysis of the different molecular forms of penicillin-binding protein 1B in Escherichia coli ponB mutants lysogenized with specialized transducing lambda (ponB+) bacteriophages. Eur. J. Biochem. 144, 571–576 (1984).

    CAS  PubMed  Google Scholar 

  247. Villalon, C. M. et al. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors. Br. J. Pharmacol. 126, 585–594 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Badia, A., Moron, A., Cuffi, L. & Vila, E. Effects of ergotamine on cardiovascular catecholamine receptors in the pithed rat. Gen. Pharmacol. 19, 475–481 (1988).

    CAS  PubMed  Google Scholar 

  249. Boulenger, J. P., Patel, J. & Marangos, P. J. Effects of caffeine and theophylline on adenosine and benzodiazepine receptors in human brain. Neurosci. Lett. 30, 161–166 (1982).

    CAS  PubMed  Google Scholar 

  250. Mukhopadhyay, S. & Poddar, M. K. Caffeine-induced locomotor activity: possible involvement of GABAergic-dopaminergic-adenosinergic interaction. Neurochem. Res. 20, 39–44 (1995).

    CAS  PubMed  Google Scholar 

  251. Levin, R. M., Greenberg, S. H. & Wein., A. J. Quantitative analysis of the effects of caffeine on sperm motility and cyclic adenosine 3′,5′-monophosphate (AMP) phosphodiesterase. Fertil. Steril. 36, 798–802 (1981).

    CAS  PubMed  Google Scholar 

  252. Ganji, S. H., Kamanna, V. S. & Kashyap, M. L. Niacin and cholesterol: role in cardiovascular disease (review). J. Nutr. Biochem. 14, 298–305 (2003).

    CAS  PubMed  Google Scholar 

  253. Mehta, J. R., Przybylski, M. & Ludlum, D. B. Alkylation of guanosine and deoxyguanosine by phosphoramide mustard. Cancer Res. 40, 4183–4186 (1980).

    CAS  PubMed  Google Scholar 

  254. Pinedo, H. M. & Peters, G. F. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. 6, 1653–1664 (1988).

    CAS  PubMed  Google Scholar 

  255. Sun, X. X., Dai, M. S. & Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 282, 8052–8059 (2007).

    CAS  PubMed  Google Scholar 

  256. Bertolini, A. et al. Paracetamol: new vistas of an old drug. CNS Drug Rev. 12, 250–275 (2006).

    CAS  PubMed  Google Scholar 

  257. Hinz, B., Cheremina, O. & Brune, K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 22, 383–390 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Academic Research Funds Singapore (R-148-000-081-112); National Natural Science Foundation of China (30772651, 30500107); Ministry of Science and Technology China (2006AA020400, 2006AA02Z317, 2004CB720103); and Science and Technology Commission of Shanghai Municipality (06PJ14072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zong Chen.

Supplementary information

Supplementary information S1 (table)

Literature–reported pharmacodynamically synergistic drug combinations due to anti–counteractive actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed. (PDF 759 kb)

Supplementary information S2 (table)

Literature–reported pharmacodynamically synergistic drug combinations due to complementary actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed. (PDF 881 kb)

Supplementary information S3 (table)

Literature–reported pharmacodynamically synergistic drug combinations due to facilitating actions, in which synergy has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed. (PDF 325 kb)

Supplementary information S4 (table)

Literature–reported pharmacodynamically additive drug combinations, in which additive action has been determined by well established synergy/additive analysis methods and its molecular mechanism has been revealed (PDF 470 kb)

Supplementary information S5 (table)

Literature–reported pharmacodynamically antagonistic drug combinations, in which antagonism has been determined by established methods and its molecular mechanism has been revealed. The antagonism of the listed drug combinations is due to interfering actions of the partner drugs in each combination. (PDF 274 kb)

Supplementary information S6 (table)

Literature–reported pharmacokinetically potentiative drug combinations, in which potentiative effect has been determined by established methods and its molecular mechanism has been revealed (PDF 440 kb)

Supplementary information S7 (table)

Literature–reported pharmacokinetically reductive drug combinations, in which reductive effect has been determined by established methods and its molecular mechanism has been revealed. (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, J., Zhu, F., Ma, X. et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8, 111–128 (2009). https://doi.org/10.1038/nrd2683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing