Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Encoding microcarriers: present and future technologies

Key Points

  • Over the past few years, in the fields of drug discovery, drug screening and diagnostics, as well as in combinatorial chemistry, many microcarrier-based multiplex technologies have arisen in which the compounds to be screened are attached to the surface of microcarriers. Each microcarrier has to be encoded according to the compound that is attached to its surface. Decoding the microcarrier reveals the identity of the surface-bound compound. The encoding methods can be classified as follows:

  • Spectrometric encoding methods are those technologies that allow the microcarriers to be decoded by placing them directly into a spectrometer. This can be achieved by using either spectrometric chemical tags or an optical encoding strategy, in which the absorption or emission spectrum of the microcarrier determines its identity.

  • Electronic encoding methods make use of radio-frequency memory tags that can transmit their identity (ID) code as a radio-frequency pulse towards a transceiver.

  • The graphical encoding methods are promising with regard to the number of unique codes that can be generated. Here, the microcarriers are encoded by the spatial modulation of a material or its properties.

  • Finally, it is possible to discriminate between microcarriers on the basis of their physical properties 'as a whole', such as size, density, composition and so on.

  • Which of those encoding strategies will turn out to be the most successful will depend not only on the number of unique codes that can be generated, but also on the versatility of the microcarriers to be applied in various assays.

Abstract

In answer to the ever-increasing need to carry out many assays simultaneously in drug screening and drug discovery, several microcarrier-based multiplex technologies have arisen in the past few years. The compounds to be screened are attached to the surface of microcarriers, which can be mixed together in a vessel that contains the target analyte. Each microcarrier has to be encoded to know which compound is attached to its surface. In this article, the methods that have been developed for the encoding of microcarriers are reviewed and discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The need to encode microcarriers.
Figure 2: Colloidal encoding.
Figure 3: Luminex xMAP system.
Figure 4: Bead-based fibre-optic array.
Figure 5: Alternative fluorescence encoding methods.
Figure 6: Electronic encoding.
Figure 7: Laser-etched barcodes.
Figure 8: Metallic nanorods.
Figure 9: Spatial selective photobleaching.

Similar content being viewed by others

References

  1. Stoll, D. et al. Protein microarray technology. Front. Biosci. 7, C13–C32 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21 (Suppl. 1), 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Case-Green, S. C., Mir, K. U., Pritchard, C. E. & Southern, E. M. Analysing genetic information with DNA arrays. Curr. Opin. Chem. Biol. 2, 404–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Furka, A. & Bennett, W. D. Combinatorial libraries by portioning and mixing. Com. Chem. High. T. Scr. 2, 105–122 (1999).

    CAS  Google Scholar 

  6. Ellman, J., Stoddard, B. & Wells, J. Combinatorial thinking in chemistry and biology. Proc. Natl Acad. Sci. USA 94, 2779–2782 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cargill, J. F. & Lebl, M. New methods in combinatorial chemistry — robotics and parallel synthesis. Curr. Opin. Chem. Biol. 1, 67–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Maclean, D. et al. Glossary of terms used in combinatorial chemistry. Pure Appl. Chem. 71, 2349–2365 (1999).

    Article  CAS  Google Scholar 

  9. Lam, K. S., Lebl, M. & Krchnak, V. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Prot. Res. 37, 487–493 (1991).

    Article  CAS  Google Scholar 

  11. Ohlmeyer, M. H. J. et al. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl Acad. Sci. USA 90, 10922–10926 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ni, Z.-J. et al. Versatile approach to encoding combinatorial organic syntheses using chemically robust secondary amine tags. J. Med. Chem. 39, 1601–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Nikolaiev, V. et al. Peptide encoding for structure determination of nonsequenceable polymers within libraries synthesized and tested on solid-phase supports. Peptide Res. 6, 161–170 (1993).

    CAS  Google Scholar 

  14. Tan, D. S. & Burbaum, J. J. Ligand discovery using encoded combinatorial libraries. Curr. Opin. Drug Disc. Devel. 3, 439–453 (2000).

    CAS  Google Scholar 

  15. Needles, M. C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl Acad. Sci. USA 90, 10700–10704 (1993).

    Article  Google Scholar 

  16. Liu, X. et al. Capillary electrochromatography-laser-induced fluorescence method for separation and detection of dansylated dialkylamine tags in encoded combinatorial libraries. J. Chromatogr. A 924, 323–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Fitch, W. L. et al. Improved methods for encoding and decoding dialkylamine-encoded combinatorial libraries. J. Comb. Chem. 1, 188–194 (1999).

    Article  CAS  Google Scholar 

  18. Czarnik, A. W. Encoding methods for combinatorial chemistry. Curr. Opin. Chem. Biol. 1, 60–66 (1997).An excellent review on encoding strategies in combinatorial chemistry, with emphasis on chemical encoding and methods that use spectrometric chemical tags. Electronic encoding is also described.

    Article  CAS  PubMed  Google Scholar 

  19. Brummel, C. L., Lee, I. N. W., Zhou, Y., Benkovic, S. J. & Winograd, N. A mass spectrometric solution to the address problem of combinatorial libraries. Science 264, 399–402 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Zambias, R. A., Boulton, D. A. & Griffin, P. R. Microchemical structural determination of a peptoid covalently bound to a polymeric bead by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. Tetrahedron Lett. 35, 4283–4286 (1994).

    Article  CAS  Google Scholar 

  21. Youngquist, R. S., Fuentes G. R., Lacey, M. P. & Keough, T. Generation and screening of combinatorial peptide libraries designed for rapid sequencing by mass spectrometry. J. Am. Chem. Soc. 117, 3900–3906 (1995).

    Article  CAS  Google Scholar 

  22. Brummel, C. L. et al. Evaluation of mass spectrometric methods applicable to the direct analysis of non-peptide bead-bound combinatorial libraries. Anal. Chem. 68, 237–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Egner, B. J., Cardno, M. & Bradley, M. Linkers for combinatorial chemistry and reaction analysis using solid phase in situ mass spectrometry. J. Chem. Soc. Chem. Commun. 21, 2163–2164 (1995).

    Article  Google Scholar 

  24. Egner, B. J., Langley, G. J. & Bradley, M. Solid phase chemistry: direct monitoring by matrix-assisted laser desorption/ionization time of flight mass spectrometry. A tool for combinatorial chemistry. J. Org. Chem. 60, 2652–2653 (1995).

    Article  CAS  Google Scholar 

  25. Geysen, H. M. et al. Isotope or mass encoding of combinatorial libraries. Chem. Biol. 3, 679–688 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shchepinov, M. S., Chalk, R. & Southern, E. M. Trityl tags for encoding in combinatorial synthesis. Tetrahedron 56, 2713–2724 (2000).

    Article  CAS  Google Scholar 

  27. Look, G. C., Holmes, C. P., Chinn, J. P. & Gallop, M. A. Methods for combinatorial organic synthesis: the use of fast 13C NMR analysis for gel phase reaction monitoring. J. Org. Chem. 59, 7588–7590 (1994).

    Article  CAS  Google Scholar 

  28. Hochlowski, J. E., Whittern, D. N. & Sowin, T. J. Encoding of combinatorial chemistry libraries by fluorine-19 NMR. J. Comb. Chem. 1, 291–293 (1999).

    Article  CAS  Google Scholar 

  29. Neilly, J. P. & Hochlowski, J. E. Elemental analysis of individual combinatorial chemistry library members by energy-dispersive X-ray spectroscopy. Appl. Spectrosc. 53, 74–81 (1999).

    Article  CAS  Google Scholar 

  30. Rahman, S. S., Busby, D. J. & Lee, D. C. Infrared and Raman spectra of a single resin bead for analysis of solid-phase reactions and use in encoding combinatorial libraries. J. Org. Chem. 63, 6196–6199 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Sebestyen, F. et al. Coloured peptides: synthesis, properties and use in preparation of peptide sub-library kits. J. Pept. Sci. 4, 294–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Egner, B. J. et al. Tagging in combinatorial chemistry: the use of coloured and fluorescent beads. Chem. Commun. 8, 735–736 (1997).

    Article  Google Scholar 

  33. Trau, M. & Battersby, B. J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater. 13, 975–979 (2001).

    Article  CAS  Google Scholar 

  34. Battersby, B. J., Lawrie, G. A. & Trau, M. Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discov. Today 6 (HTS Suppl.), 19–26 (2001).This review compares some important bead-based techniques and devices for high-throughput gene screening, including the colloidal encoding method and the technique that makes use of fluorescent dyes incorporated in concentric silica layers.

    Article  Google Scholar 

  35. Battersby, B. J. et al. Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 122, 2138–2139 (2000).

    Article  CAS  Google Scholar 

  36. Grondahl, L., Battersby, B. J., Bryant, D. & Trau, M. Encoding combinatorial libraries: a novel application of fluorescent silica colloids. Langmuir 16, 9709–9715 (2000).

    Article  CAS  Google Scholar 

  37. Fulton, R. J. et al. Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem. 43, 1749–1756 (1997).This article explains in detail the principle of encoding by multiple fluorescent dyes.

    CAS  PubMed  Google Scholar 

  38. Kettman, J. R., Davies, T., Chandler, D., Oliver, K. G. & Fulton, R. J. Classification and properties of 64 multiplexed microsphere sets. Cytometry 33, 234–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Prabhakar, U., Eirikis, E. & Davis, H. M. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP (TM) assay. J. Immunol. Methods 260, 207–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Martins, T. B. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immun. 9, 41–45 (2002).

    Google Scholar 

  41. Ye, F. et al. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum. Mutat. 17, 305–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Taylor, J. D. et al. Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30, 661–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, L., Tran, D. K. & Wang, X. BADGE, BeadsArray for the detection of gene expression, a high-throughput diagnostic bioassay. Genome Res. 11, 1888–1898 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunbar, S. A. & Jacobson, J. W. Application of the Luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: a pilot study. Clin. Chem. 46, 1498–1500 (2000).

    CAS  PubMed  Google Scholar 

  45. Vignali, D. A. A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243, 243–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Carson, R. T. & Vignali, D. A. A. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods 227, 41–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Gordon, R. F. & McDade, R. L. Multiplexed quantification of human IgG, IgA, and IgM with the FlowMetrix(TM) system. Clin. Chem. 43, 1799–1801 (1997).

    CAS  PubMed  Google Scholar 

  48. WalkerPeach, C. R., Smith, P. L., DuBois, D. B. & Fulton, R. J. A novel rapid multiplexed assay for herpes simplex virus DNA using the FlowMetrix(TM) cytometric microsphere technology. Clin. Chem. 43, 21–21 (1997).

    Google Scholar 

  49. Smith, P. L., WalkerPeach, C. R., Fulton, R. J. & DuBois, D. B. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin. Chem. 44, 2054–2056 (1998).

    CAS  PubMed  Google Scholar 

  50. Oliver, K. G., Kettman, J. R. & Fulton, R. J. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin. Chem. 44, 2057–2060 (1998).

    CAS  PubMed  Google Scholar 

  51. Bellisario, R., Colinas, R. J. & Pass, K. A. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood-spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin. Chem. 46, 1422–1424 (2000).

    CAS  PubMed  Google Scholar 

  52. Pantano, P. & Walt, D. R. Ordered nanowell arrays. Chem. Mater. 8, 2832–2835 (1996).

    Article  CAS  Google Scholar 

  53. Walt, D. R. Bead-based fiber-optic arrays. Science 287, 451–452 (2000).The construction of the bead-based fibre-optic array is explained, together with the principles of the imaging system that is used for decoding the array.

    Article  CAS  PubMed  Google Scholar 

  54. Michael, K. L. et al. The use of optical-imaging fibers for the fabrication of array sensors. Polymers in Sensors 690, 273–289 (1998).

    Article  CAS  Google Scholar 

  55. Michael, K. L., Taylor, L. C., Schultz, S. L. & Walt, D. R. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 70, 1242–1248 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Steemers, F. J., Ferguson, J. A. & Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnol. 18, 91–94 (2000).

    Article  CAS  Google Scholar 

  57. Ferguson, J. A., Steemers, F. J. & Walt, D. R. High-density fiber-optic DNA random microsphere array. Anal. Chem. 72, 5618–5624 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Ferguson, J. A., Boles, T. C., Adams, C. P. & Walt, D. R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnol. 14, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  59. Healey, B. G., Matson, R. S. & Walt, D. R. Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem. 251, 270–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Szurdoki, F., Michael, K. L. & Walt, D. R. A duplexed microsphere-based fluorescent immunoassay. Anal. Biochem. 291, 219–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Han, M., Gao, X. H., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).The advantages of using fluorescent nanocrystals over organic fluorescent dyes are described. Important issues about practical implications when using multiple fluorescent signals are also discussed.

    Article  CAS  Google Scholar 

  63. Alivisatos, A. P. Less is more in medicine — sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy. Sci. Am. 285, 66–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Keij, J. F. & Steinkamp, J. A. Flow cytometric characterization and classification of multiple dual-colour fluorescent microspheres using fluorescence lifetime. Cytometry 33, 318–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kürner, J. M., Klimant, I., Krause, C., Pringsheim, E. & Wolfbeis, O. S. A new type of phosphorescent nanospheres for use in advanced time-resolved multiplexed bioassays. Anal. Biochem. 297, 32–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Moran, E. J. Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc. 117, 10787–10788 (1995).

    Article  CAS  Google Scholar 

  67. Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A. & Nova, M. P. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Edn Engl. 34, 2289–2291 (1995).

    Article  CAS  Google Scholar 

  68. Service, R. F. Radio tags speed compound synthesis. Science 270, 577 (1995).

    Article  CAS  Google Scholar 

  69. Czarnik, T. & Nova, M. No static at all. Chem. Brit. 33, 39–41 (1997).A discussion of electronic memory tags and their use in the directed-sorting method.

    CAS  Google Scholar 

  70. Shi, S., Xiao, X. & Czarnik, A. W. A combinatorial synthesis of tyrphostins via the 'directed sorting' method. Biotechnol. Bioeng. 61, 7–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Xiao, X. et al. Solid-phase combinatorial synthesis using MicroCan reactors, rf tagging and directed sorting. Biotechnol. Bioeng. 71, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, K. Downsizing DNA assays. Scientist 16, 52–52 (2002).

    Google Scholar 

  73. Mandecki, W. Multiplex assay for nucleic acids employing transponders. US Patent 6,051,377 (2000).

  74. Houghten, R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc. Natl Acad. Sci. USA 82, 5131–5135 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xiao, X., Zhao, C., Potash, H. & Nova, M. P. Combinatorial chemistry with laser optical encoding. Angew. Chem. Int. Edn Engl. 36, 780–782 (1997).

    Article  CAS  Google Scholar 

  76. Dames, A., England, J. & Colby, E. Bio-assay technique. WO Patent 00/16893 (2000).

  77. Zhou, H. H., Roy, S., Schulman, H. & Natan, M. J. Solution and chips arrays in protein profiling. Trends Biotechnol. 19 (Suppl.), 34–39 (2001).

    Article  Google Scholar 

  78. Martin, B. R. et al. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Matter. 11, 1021–1025 (1999).

    Article  CAS  Google Scholar 

  79. Martin, B. R. et al. Method of manufacture of colloidal rod particles as nanobar codes. WO Patent 01/25510 (2001).

  80. Nicewarner-Peña, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).The preparation of nanorods is clearly explained. A thorough discussion on the different aspects of imaging the particles is also provided.

    Article  PubMed  Google Scholar 

  81. Braeckmans, K. et al. A new generation of encoded microcarriers. Drug Discovery Technology 12–17 Aug 2001, Boston [online] (cited 01 May 02) 〈http://allserv.rug.ac.be/farmserv/biofys/images/poster%20web.PDF〉 (2001).Encoding by spatial-selective photobleaching is explained, together with the instrumental design of the encoding apparatus.

    Google Scholar 

  82. De Smedt, S. C., Pauwels, R. W. J., Demeester, J. & Roelant, C. H. S. Encoding of microcarriers. WO Patent 00/63695 (2000).

  83. Wedekind, P., Kubitscheck, U., Heinrich, O. & Peters, R. Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion. Biophys. J. 71, 1621–1632 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McHugh, T. M., Miner, R. C., Logan, L. H. & Stites, D. P. Simultaneous detection of antibodies to cytomegalo-virus and herpes-simplex virus by using flow-cytometry and a microsphere-based fluorescence immunoassay. J. Clin. Microbiol. 26, 1957–1961 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Scillian, J. J. et al. Early detection of antibodies against rDNA-produced HIV proteins with a flow cytometric assay. Blood 73, 2041–2048 (1989).

    CAS  PubMed  Google Scholar 

  86. Geysen, M. Encoding scheme for solid phase chemical libraries. WO Patent 00/61281 (2000).

  87. Wang, M. S. & Li, L. Rapid screening assay methods and devices. US Patent 5,922,617 (1999).

  88. Fenniri, H. et al. Towards the DRED of resin-supported combinatorial libraries: a non-invasive methodology based on bead self-encoding and multispectral imaging. Angew. Chem. Int. Edn Engl. 37, 4483–4485 (2000).

    Article  Google Scholar 

  89. Fenniri, H., Ding, L. H., Ribbe, A. E. & Zyrianov, Y. Barcoded resins: a new concept for polymer-supported combinatorial library self-deconvolution. J. Am. Chem. Soc. 123, 8151–8152 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ravkin, I., Goldbard, S., Hyun, W. C. & Zarowitz, M. A. Combinatorial chemical library supports having indicia at coding positions and methods of use. WO Patent 00/63419 (2000).

  91. Michael, K. L., Taylor, L. C. & Schultz, S. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 70, 1242–1248 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. C Roelant for many fruitful discussions about progress in the fields of drug discovery and diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan C. De Smedt.

Related links

Related links

DATABASES

Medscape DrugInfo

Taxol

OMIM

cystic fibrosis

LINKS

Illumina

Luminex Corporation

Nature Biotechnology

PharmaSeq

SmartBead Technologies

Glossary

TARGET ANALYTE

The substance whose properties are being determined in an analysis.

EMISSION SPECTRUM

The spectrum of possible emitted wavelengths of a fluorophore.

CHROMOPHORE

An atom or group of atoms that has a specific light-absorption spectrum, which is usually in the visible spectrum.

FLUOROPHORE

A molecule in which the three stages of fluorescence occur. First, a photon from an external source is absorbed, which causes an excited electronic singlet state. This state exists for a finite time period, typically 1–10 ns, during which the fluorophore is subjected to interactions with its environment that result in a relaxed singlet state. Finally, a photon of lower energy (and hence a longer wavelength) compared with the absorbed photon is emitted.

COLLOIDAL FORCE

The long-range force between colloidal particles; that is, particles smaller than a few micrometres in diameter. The origin of colloidal forces can be, for example, electrostatic, electrodynamic or steric.

POLYELECTROLYTE

A macromolecule in which a substantial portion of the constituent units have ionizable or ionic groups, or both.

FLUORESCENCE RESONANCE ENERGY TRANSFER

A distance-dependent interaction between the electronically excited states of two dye molecules, in which excitation is transferred from a donor molecule to an acceptor molecule without emission of a photon.

EXCITATION SPECTRUM

The spectrum of possible wavelengths for the excitation of a fluorophore.

ISOTROPIC

Equal in all directions.

FLOW CYTOMETER

An instrument that measures properties, such as light scatter and fluorescence, of microscopic objects, such as cells, as they move or flow in liquid suspension.

PHOSPHORESCENCE

This is essentially the same process as fluorescence, but with a longer excited singlet state — lifetime is typically 10−3 to 102 s.

PHOTOCHROMISM

A reversible photoisomerization between two isomers that have different absorption spectra.

REFRACTIVE INDEX

The ratio of the velocity of propagation of an electromagnetic wave in a vacuum to its velocity in the medium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeckmans, K., De Smedt, S., Leblans, M. et al. Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 1, 447–456 (2002). https://doi.org/10.1038/nrd817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing