Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Precision prevention of oesophageal adenocarcinoma

Abstract

The incidence of oesophageal adenocarcinoma has risen rapidly over the past four decades. Unfortunately, treatments have not kept pace; unless their cancer is identified at a very early stage, most patients will not survive a year after diagnosis. The beginnings of this widespread problem were first recognized over 25 years ago, yet rates have continued to rise against a backdrop of much improved understanding and management of oesophageal adenocarcinoma. We estimate that only 7% of the 10,000 cases of oesophageal adenocarcinoma diagnosed annually in the USA are identified through current approaches to cancer control, and trace pathways by which the remaining 93% are 'lost'. On the basis of emerging data on aetiology and predictive factors, together with new diagnostic tools, we suggest a five-tier strategy for prevention and control that begins with a wide population base and triages individuals into progressively higher risk strata, each with risk-appropriate prevention, screening and treatment options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The current approach to control of oesophageal adenocarcinoma identifies only about 7% of the cases via screening and surveillance, with most of the remainder diagnosed because of alarm symptoms, usually indicative of a late stage of disease.

Similar content being viewed by others

References

  1. Holmes, R. S. & Vaughan, T. L. Epidemiology and pathogenesis of esophageal cancer. Semin. Radiat. Oncol. 17, 2–9 (2007).

    Article  PubMed  Google Scholar 

  2. Thrift, A. P. & Whiteman, D. C. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann. Oncol. 23, 3155–3162 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Steevens, J., Botterweck, A. A. M., Dirx, M. J. M., van den Brandt, P. A. & Schouten, L. J. Trends in incidence of oesophageal and stomach cancer subtypes in Europe. J. Gastroenterol. 22, 669–678 (2010).

    Google Scholar 

  4. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER 9 Regs Research Data, (with SEER Delay Factors) Nov 2013 Sub (1973–2011) National Cancer Institute, DCCPS, Surveillance Research Program, released April 2014 [online], (2014).

  5. Cancer Research UK. Oesophageal cancer incidence statistics [online], (2014).

  6. Howlader, N. et al. Cancer Statistics Review, 1975–2011. Surveillance, Epidemiology, and End Results (SEER) Program [online], (2014).

    Google Scholar 

  7. Sigterman, K. E., van Pinxteren, B., Bonis, P. A., Lau, J. & Numans, M. E. Short-term treatment with proton pump inhibitors, H2-receptor antagonists and prokinetics for gastro-oesophageal reflux disease-like symptoms and endoscopy negative reflux disease. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD002095 http://dx.doi.org/10.1002/14651858.CD002095.pub5.

  8. Sharma, P. Clinical practice. Barrett's esophagus. N. Engl. J. Med. 361, 2548–2556 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Wassenaar, E. B. & Oelschlager, B. K. Effect of medical and surgical treatment of Barrett's metaplasia. World J. Gastroenterol. 16, 3773–3779 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simonka, Z. et al. The effects of laparoscopic Nissen fundoplication on Barrett's esophagus: long-term results. Scand. J. Gastroenterol. 47, 13–21 (2012).

    Article  PubMed  Google Scholar 

  11. Zaninotto, G. et al. Long-term follow-up of Barrett's epithelium: medical versus antireflux surgical therapy. J. Gastrointest. Surg. 16, 7–14 (2012).

    Article  PubMed  Google Scholar 

  12. Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 63, 7–42 (2014).

    Article  PubMed  Google Scholar 

  13. Phoa, K. N. et al. Radiofrequency ablation vs endoscopic surveillance for patients with Barrett esophagus and low-grade dysplasia: a randomized clinical trial. JAMA 311, 1209–1217 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Rubenstein, J. H. & Kwon, R. S. radiofrequency ablation for Barrett's esophagus with low-grade dysplasia: a hammer looking for a nail. Gastroenterology 147, 706–707 (2014).

    Article  PubMed  Google Scholar 

  15. Yang, P. C. & Davis, S. Incidence of cancer of the esophagus in the US by histologic type. Cancer 61, 612–617 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Lao-Sirieix, P. et al. Physiological and molecular analysis of acid loading mechanisms in squamous and columnar-lined esophagus. Dis. Esophagus 21, 529–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10, 87–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zamoyski, A. Moscow 1812: Napoleon's Fatal March (Harper Collins, 2004).

    Google Scholar 

  19. Kraak, M.-J. Geovisualization illustrated. ISPRS J. Photogramm. Remote Sens. 57, 390–399 (2003).

    Article  Google Scholar 

  20. Peery, A. F. et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 143, 1179–1187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Surveillance, Epidemiology, and End Results (SEER) Program. Cancer of the Esophagus—SEER Stat Fact Sheets [online], (2014).

  22. United States Census Bureau. Census of Population and Housing [online], (2015).

  23. Lagergren, J., Bergstrom, R., Lindgren, A. & Nyren, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med. 340, 825–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Farrow, D. C. et al. Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 11, 231–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Dent, J., El-Serag, H. B., Wallander, M.-A. & Johansson, S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 54, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruigómez, A. et al. Natural history of gastro-oesophageal reflux disease diagnosed in general practice. Aliment. Pharmacol. Ther. 20, 751–760 (2004).

    Article  PubMed  Google Scholar 

  27. Rubenstein, J. H. & Taylor, J. B. Meta-analysis: the association of oesophageal adenocarcinoma with symptoms of gastro-oesophageal reflux. Aliment. Pharmacol. Ther. 32, 1222–1227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cook, M. B. et al. Gastroesophageal reflux in relation to adenocarcinomas of the esophagus: a pooled analysis from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON). PLoS ONE 9, e103508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaheen, N. J. N. et al. Upper endoscopy for gastroesophageal reflux disease: best practice advice from the clinical guidelines committee of the American College of Physicians. Ann. Intern. Med. 157, 808–816 (2012).

    Article  PubMed  Google Scholar 

  30. Edelstein, Z. R., Farrow, D. C., Bronner, M. P., Rosen, S. N. & Vaughan, T. L. Central adiposity and risk of Barrett's esophagus. Gastroenterology 133, 403–411 (2007).

    Article  PubMed  Google Scholar 

  31. Rubenstein, J. H. et al. Prediction of Barrett's esophagus among men. Am. J. Gastroenterol. 108, 353–362 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rex, D., Cummings, O. & Shaw, M. Screening for Barrett's esophagus in colonoscopy patients with and without heartburn. Gastroenterology 125, 1670–1677 (2003).

    Article  PubMed  Google Scholar 

  33. Balasubramanian, G. et al. Prevalence and predictors of columnar lined esophagus in gastroesophageal reflux disease (GERD) patients undergoing upper endoscopy. Am. J. Gastroenterol. 107, 1655–1661 (2012).

    Article  PubMed  Google Scholar 

  34. Desai, T. K. et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett's oesophagus: a meta-analysis. Gut 61, 970–976 (2012).

    Article  PubMed  Google Scholar 

  35. Esserman, L. J. et al. Addressing overdiagnosis and overtreatment in cancer: a prescription for change. Lancet Oncol. 15, 234–242 (2014).

    Article  Google Scholar 

  36. Bhat, S. K. et al. Oesophageal adenocarcinoma and prior diagnosis of Barrett's oesophagus: a population-based study. Gut 64, 20–25 (2015).

    Article  PubMed  Google Scholar 

  37. Dubecz, A. et al. Temporal trends in long-term survival and cure rates in esophageal cancer: a SEER database analysis. J. Thorac. Oncol. Febr. 7, 443–447 (2012).

    Article  Google Scholar 

  38. Thrift, A. P., Kendall, B. J., Pandeya, N. & Whiteman, D. C. A model to determine absolute risk for esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 11, 138–144 (2013).

    Article  PubMed  Google Scholar 

  39. Corley, D. A. et al. Impact of endoscopic surveillance on mortality from Barrett's esophagus-associated esophageal adenocarcinomas. Gastroenterology 145, 312–319 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Verbeek, R. E. et al. Surveillance of Barrett's esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am. J. Gastroenterol. 109, 1215–1222 (2014).

    Article  PubMed  Google Scholar 

  41. Whiteman, D. C. Does a prior diagnosis of Barrett's oesophagus influence risk of dying from oesophageal adenocarcinoma? Gut 64, 5–6 (2015).

    Article  PubMed  Google Scholar 

  42. Kong, C. Y. et al. Exploring the recent trend in esophageal adenocarcinoma incidence and mortality using comparative simulation modeling. Cancer Epidemiol. Biomarkers Prev. 23, 997–1006 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cook, M. B. et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J. Natl Cancer Inst. 102, 1344–1353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook, M. B. et al. Cigarette smoking increases risk of Barrett's esophagus: an analysis of the Barrett's and Esophageal Adenocarcinoma Consortium. Gastroenterology 142, 744–753 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoyo, C. et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int. J. Epidemiol. 41, 1706–1718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hardikar, S. et al. The role of tobacco, alcohol, and obesity in neoplastic progression to esophageal adenocarcinoma: a prospective study of Barrett's esophagus. PLoS ONE 8, e52192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kubo, A. et al. Sex-specific associations between body mass index, waist circumference and the risk of Barrett's oesophagus: a pooled analysis from the international BEACON consortium. Gut 62, 1684–1691 (2013).

    Article  PubMed  Google Scholar 

  48. Liao, L. M. et al. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophagogastric junction in a pooled analysis. Gastroenterology 142, 442–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Steevens, J., Schouten, L. J., Goldbohm, R. A. & van den Brandt, P. A. Vegetables and fruits consumption and risk of esophageal and gastric cancer subtypes in the Netherlands cohort study. Int. J. Cancer 129, 2681–2693 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Li, W.-Q. et al. Index-based dietary patterns and risk of esophageal and gastric cancer in a large cohort study. Clin. Gastroenterol. Hepatol. 11, 1130–1136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kastelein, F. et al. Surveillance in patients with long-segment Barrett's oesophagus: a cost-effectiveness analysis. Gut http://dx.doi.org/10.1136/gutjnl-2014-307197.

  52. Rastogi, A. et al. Incidence of esophageal adenocarcinoma in patients with Barrett's esophagus and high-grade dysplasia: a meta-analysis. Gastrointest. Endosc. 67, 394–398 (2008).

    Article  PubMed  Google Scholar 

  53. Spechler, S. J. & Souza, R. F. Barrett's esophagus. N. Engl. J. Med. 371, 836–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Olsen, C. M., Pandeya, N., Green, A. C., Webb, P. M. & Whiteman, D. C. Population attributable fractions of adenocarcinoma of the esophagus and gastroesophageal junction. Am. J. Epidemiol. 174, 582–590 (2011).

    Article  PubMed  Google Scholar 

  55. Engel, L. S. et al. Population attributable risks of esophageal and gastric cancers. J. Natl Cancer Inst. 95, 1404–1413 (2003).

    Article  PubMed  Google Scholar 

  56. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thrift, A. P. & Whiteman, D. C. Can we really predict risk of cancer? Cancer Epidemiol. 37, 349–352 (2013).

    Article  PubMed  Google Scholar 

  58. Rubenstein, J. H. et al. Influence of malpractice history on the practice of screening and surveillance for Barrett's esophagus. Am. J. Gastroenterol. 103, 842–849 (2008).

    Article  PubMed  Google Scholar 

  59. Sun, X., Chandar, A. K., Elston, R. & Chak, A. What we know and what we need to know about familial gastroesophageal reflux disease and Barrett's esophagus. Clin. Gastroenterol. Hepatol. 12, 1664–1666 (2014).

    Article  PubMed  Google Scholar 

  60. Duggan, C. et al. Association between markers of obesity and progression from Barrett's esophagus to esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 11, 934–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hardikar, S. et al. Inflammation and oxidative stress markers and esophageal adenocarcinoma incidence in a Barrett's esophagus cohort. Cancer Epidemiol. Biomarkers Prev. 23, 2393–2403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cook, M. B. et al. Association between circulating levels of sex steroid hormones and Barrett's esophagus in men: a case–control analysis. Clin. Gastroenterol. Hepatol. http://dx.doi.org/10.1016/j.cgh.2014.08.027.

  63. Zhang, J. et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS ONE 7, e30181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, X. et al. Gastro-esophageal reflux disease symptoms and demographic factors as a pre-screening tool for Barrett's esophagus. PLoS ONE 9, e94163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ek, W. E. et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett's esophagus, and gastroesophageal reflux. J. Natl. Cancer Inst. 105, 1711–1718 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Su, Z. et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nat. Genet. 44, 1131–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nat. Genet. 45, 1487–1493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buas, M. F. et al. Integrative post genome-wide association analysis of CDKN2A and TP53 SNPs and risk of esophageal adenocarcinoma. Carcinogenesis 35, 2740–2747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Palles, C. et al. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus. Gastroenterology 148, 367–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gora, M. J. et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Varghese, S., Lao-Sirieix, P. & Fitzgerald, R. C. Identification and clinical implementation of biomarkers for Barrett's esophagus. Gastroenterology 142, 435–441 (2012).

    Article  PubMed  Google Scholar 

  72. Kadri, S. R. et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett's oesophagus in primary care: cohort study. BMJ 341, c4372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ross-Innes, C. S. et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett's esophagus: a multi-center case–control study. PLoS Med. http://dx.doi.org/10.1371/journal.pmed.1001780.

  74. Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vaughan, T. L. From genomics to diagnostics of esophageal adenocarcinoma. Nat. Genet. 46, 806–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coleman, H. G. et al. Symptoms and endoscopic features at Barrett's esophagus diagnosis: implications for neoplastic progression risk. Am. J. Gastroenterol. 109, 527–534 (2014).

    Article  PubMed  Google Scholar 

  77. Gregson, E. M. & Fitzgerald, R. C. Biomarkers for dysplastic Barrett's: ready for prime time? World J. Surg. http://dx.doi.org/10.1007/s00268-014-2640-x.

  78. Li, X. et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett's esophagus. Cancer Prev. Res. (Phila.) 7, 114–127 (2014).

    Article  Google Scholar 

  79. Weaver, J. M. J., Ross-Innes, C. S. & Fitzgerald, R. C. The '-omics' revolution and oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 11, 19–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Vaughan, T., Dong, L., Blount, P. & Ayub, K. Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett's oesophagus: a prospective study. Lancet Oncol. 6, 945–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Kastelein, F. et al. Nonsteroidal anti-inflammatory drugs and statins have chemopreventative effects in patients with Barrett's esophagus. Gastroenterology 141, 2000–2008 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Singh, S., Devanna, S., Edakkanambeth Varayil, J., Murad, M. & Iyer, P. G. Physical activity is associated with reduced risk of esophageal cancer, particularly esophageal adenocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 14, 101 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kantor, E. D., Onstad, L., Blount, P. L., Reid, B. J. & Vaughan, T. L. Use of statin medications and risk of esophageal adenocarcinoma in persons with Barrett's esophagus. Cancer Epidemiol. Biomark. Prev. 21, 456–461 (2012).

    Article  CAS  Google Scholar 

  84. Sharp, L., Carsin, A.-E., Cantwell, M. M., Anderson, L. A. & Murray, L. J. Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. J. Nutr. 143, 1966–1973 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Akiyama, J. et al. Strategy for prevention of cancers of the esophagus. Ann. NY Acad. Sci. 1325, 108–126 (2014).

    Article  PubMed  Google Scholar 

  86. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anaparthy, R. & Sharma, P. Progression of Barrett oesophagus: role of endoscopic and histological predictors. Nat. Rev. Gastroenterol. Hepatol. 11, 525–534 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

T.L.V. was supported in part by National Cancer Institute Established Investigator Award in Cancer Prevention and Control (K05 CA124911).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of this manuscript.

Corresponding author

Correspondence to Thomas L. Vaughan.

Ethics declarations

Competing interests

R.C.F. developed the Cytosponge technology with MRC-Technology and is named on related patents. The technology has recently been licensed to Covidien GI Solutions; R.C.F. has no direct financial relationship with Covidien. T.L.V. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaughan, T., Fitzgerald, R. Precision prevention of oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol 12, 243–248 (2015). https://doi.org/10.1038/nrgastro.2015.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing