Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of ankylosing spondylitis—insights into pathogenesis

Key Points

  • To date, >40 genetic variants have been identified that influence the risk of developing ankylosing spondylitis (AS), including HLA alleles such as HLA-B27, among other, non-HLA alleles

  • Genetic studies have also provided strong evidence of a role for the IL-23 pathway in AS pathogenesis

  • Other pathways associated with AS include peptide handling prior to HLA presentation, innate and adaptive immune cell differentiation and activation, and bacterial sensing in the gut

  • The demonstration that patients with AS have a distinct gut microbiome is consistent with theories that AS is caused by IL-23-dependent interactions between the gut microbiome and the host immune system

  • Data on AS genetics have provided preliminary support for the use of therapies targeting the IL-23 pathway and identified other potential targets, including aminopeptidases and the gut microbiome

  • Studies performed to date have uncovered less than one-third of the overall genetic risk in AS; new, larger studies should help define the immunopathogenesis of AS and related diseases

Abstract

Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as spondyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis. Patients with these conditions share a clinical predisposition for spinal and pelvic joint dysfunction, as well as genetic associations, notably with HLA-B*27. Spondyloarthropathies are characterized by histopathological inflammation in entheses (regions of high mechanical stress where tendons and ligaments insert into bone) and in the subchondral bone marrow, and by abnormal osteoproliferation at involved sites. The association of AS with HLA-B*27, first described >40 years ago, led to hope that the cause of the disease would be rapidly established. However, even though many theories have been advanced to explain how HLA-B*27 is involved in AS, no consensus about the answers to this question has been reached, and no successful treatments have yet been developed that target HLA-B27 or its functional pathways. Over the past decade, rapid progress has been made in discovering further genetic associations with AS that have shed new light on the aetiopathogenesis of the disease. Some of these discoveries have driven translational ideas, such as the repurposing of therapeutics targeting the cytokines IL-12 and IL-23 and other factors downstream of this pathway. AS provides an excellent example of how hypothesis-free research can lead to major advances in understanding pathogenesis and to the development of innovative therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of the gut in driving joint inflammation in ankylosing spondylitis.
Figure 2: Potential mechanisms by which ERAP variants operate to influence disease risk in ankylosing spondylitis.
Figure 3: Timeline of the major discoveries in relation to the genetic causes of AS.

Similar content being viewed by others

References

  1. de Blecourt, J., Polman, A. & de Blecourt-Meindersma, T. Hereditary factors in rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 20, 215–223 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown, M. A., Laval, S. H., Brophy, S. & Calin, A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 59, 883–886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thjodleifsson, B., Geirsson, A. J., Bjornsson, S. & Bjarnason, I. A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum. 56, 2633–2639 (2007).

    Article  PubMed  Google Scholar 

  4. Geirsson, A. J., Kristjansson, K. & Gudbjornsson, B. A strong familiality of ankylosing spondylitis through several generations. Ann. Rheum. Dis. 69, 1346–1348 (2010).

    Article  PubMed  Google Scholar 

  5. Calin, A., Marder, A., Becks, E. & Burns, T. Genetic differences between B27 positive patients with ankylosing spondylitis and B27 positive healthy controls. Arthritis Rheum. 26, 1460–1464 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. van der Linden, S., Valkenburg, H. & Cats, A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br. J. Rheumatol. 22, 18–19 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen, O. B. et al. Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs. environmental effectors in disease causation. Scand. J. Rheumatol. 37, 120–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Hamersma, J. et al. Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheum. 44, 1396–1400 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Brophy, S. et al. Concordance of disease severity among family members with ankylosing spondylitis? J. Rheumatol. 31, 1775–1778 (2004).

    PubMed  Google Scholar 

  11. Duncan, E. L., Cardon, L. R., Sinsheimer, J. S., Wass, J. A. & Brown, M. A. Site and gender specificity of inheritance of bone mineral density. J. Bone Miner. Res. 18, 1531–1538 (2003).

    Article  PubMed  Google Scholar 

  12. Kwoh, C. K. et al. Age, sex, and the familial risk of rheumatoid arthritis. Am. J. Epidemiol. 144, 15–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Edmunds, L., Elswood, J., Kennedy, L. G. & Calin, A. Primary ankylosing spondylitis, psoriatic and enteropathic spondyloarthropathy: a controlled analysis. J. Rheumatol. 18, 696–698 (1991).

    CAS  PubMed  Google Scholar 

  14. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Caffrey, M. F. & James, D. C. Human lymphocyte antigen association with ankylosing spondylitis. Nature 242, 121 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 301, 904–907 (1973).

    Article  Google Scholar 

  17. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Renwick, J. H. & Lawler, S. D. Genetical linkage between the ABO and nail–patella loci. Ann. Hum. Genet. 19, 312–331 (1955).

    Article  CAS  PubMed  Google Scholar 

  19. Stokes, P. L., Asquith, P., Holmes, G. K., Mackintosh, P. & Cooke, W. T. Histocompatibility antigens associated with adult coeliac disease. Lancet 2, 162–164 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, T. J., Schultes, L. M. & Kuban, D. J. Histocompatibility (HL-A) antigens associated with psoriasis. N. Engl. J. Med. 287, 738–740 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. White, S. H., Newcomer, V. D., Mickey, M. R. & Terasaki, P. I. Disturbance of HL-A antigen frequency in psoriasis. N. Engl. J. Med. 287, 740–743 (1972).

    Article  CAS  PubMed  Google Scholar 

  22. Baum, J. & Ziff, M. The rarity of ankylosing spondylitis in the black race. Arthritis Rheum. 14, 12–18 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Brown, M. A. et al. Ankylosing spondylitis in West Africans—evidence for a non-HLA-B27 protective effect. Ann. Rheum. Dis. 56, 68–70 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Penrose, L. S. The importance of statistics in psychiatry. Proc. R. Soc. Med. 40, 863–870 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Edwards, J. H. Penrose and sib-pairs. Ann. Hum. Genet. 62, 365–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, M. A. et al. A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum. 41, 588–595 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Laval, S. H. et al. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am. J. Hum. Genet. 68, 918–926 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carter, K. W. et al. Combined analysis of three whole genome linkage scans for ankylosing spondylitis. Rheumatology (Oxford) 46, 763–771 (2007).

    Article  CAS  Google Scholar 

  30. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hill, A. V. et al. HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet 337, 640–642 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. D'Amato, M. et al. Frequency of the new HLA-B*2709 allele in ankylosing spondylitis patients and healthy individuals. Dis. Markers 12, 215–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. López-Larrea C. et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 3, 169–176 (1995).

    Article  Google Scholar 

  34. Khan, M. A. Polymorphism of HLA-B27: 105 subtypes currently known. Curr. Rheumatol. Rep. 15, 362 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. http://dx.doi.org/10.1038/ncomms8146.

  36. Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirino, Y. et al. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45, 202–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goyette, P. et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mielants, H. et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. J. Rheumatol. 18, 394–400 (1991).

    CAS  PubMed  Google Scholar 

  40. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet. 6, e1001195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cortes, A. & Brown, M. A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cortes, A. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crane, A. M. et al. Role of NOD2 variants in spondylarthritis. Arthritis Rheum. 46, 1629–1633 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ferreiros-Vidal, I. et al. Lack of association of ankylosing spondylitis with the most common NOD2 susceptibility alleles to Crohn's disease. J. Rheumatol. 30, 102–104 (2003).

    CAS  PubMed  Google Scholar 

  46. D'Amato, M. The Crohn's associated NOD2 3020InsC frameshift mutation does not confer susceptibility to ankylosing spondylitis. J. Rheumatol. 29, 2470–2471 (2002).

    PubMed  Google Scholar 

  47. Miceli-Richard, C. et al. CARD15/NOD2 analyses in spondylarthropathy. Arthritis Rheum. 46, 1405–1406 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  49. Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112, 693–706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Awasthi, A. et al. Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kenna, T. J. & Brown, M. A. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheumatol. 45, 730–738 (2012).

    Google Scholar 

  53. Baeten, D. et al. The anti-IL17A monoclonal antibody secukinumab (AIN457) showed good safety and efficacy in the treatment of active ankylosing spondylitis [abstract L7]. In Late-breaking abstracts: American College of Rheumatology 2010 annual scientific meeting. Arthritis Rheum. 62, 3837–3845 (2010).

    Article  Google Scholar 

  54. Poddubnyy, D., Hermann, K. G., Callhoff, J., Listing, J. & Sieper, J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis. 73, 817–823 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Baeten, D. et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382, 1705–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Cua, D. J. & Sherlock, J. P. Autoimmunity's collateral damage: gut microbiota strikes 'back'. Nat. Med. 17, 1055–1056 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Kenna, T. J. & Brown, M. A. Immunopathogenesis of ankylosing spondylitis. Int. J. Clin. Rheumatol. 8, 265–274 (2013).

    Article  CAS  Google Scholar 

  58. Uotila, T. et al. Reactive arthritis in a population exposed to an extensive waterborne gastroenteritis outbreak after sewage contamination in Pirkanmaa, Finland. Scand. J. Rheumatol. 40, 358–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Costello, M. E. et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.38967.

  60. Rosenbaum, J. T. et al. Does the microbiome play a causal role in spondyloarthritis? Clin. Rheumatol. 33, 763–767 (2014).

    Article  PubMed  Google Scholar 

  61. Costello, M. E., Elewaut, D., Kenna, T. J. & Brown, M. A. Microbes, the gut and ankylosing spondylitis. Arthritis Res. Ther. 15, 214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Rehaume, L. M. et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 66, 2780–2792 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Robinson, P. C. et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis. (2015).

  65. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hinks, A. et al. Subtype specific genetic associations for juvenile idiopathic arthritis: ERAP1 with the enthesitis related arthritis subtype and IL23R with juvenile psoriatic arthritis. Arthritis Res. Ther. 13, R12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuiper, J. J. et al. A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Hum. Mol. Genet. 23, 6081–6087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robinson, P. C. et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol. 67, 140–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Harvey, D. et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum. Mol. Genet. 18, 4204–4212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Costantino, F. et al. ERAP1 gene expression is influenced by non-synonymous polymorphisms associated with predisposition to spondyloarthritis. Arthritis Rheumatol. 67, 1525–1534 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Andrés, A. M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haroon, N., Tsui, F. W., Chiu, B., Tsui, H. W. & Inman, R. D. Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J. Rheumatol. 37, 1907–1910 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Kochan, G. et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl Acad. Sci. USA 108, 7745–7750 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Evnouchidou, I., Weimershaus, M., Saveanu, L. & van Endert, P. ERAP1–ERAP2 dimerization increases peptide-trimming efficiency. J. Immunol. 193, 901–908 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Mear, J. P. et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J. Immunol. 163, 6665–6670 (1999).

    CAS  PubMed  Google Scholar 

  78. Kenna, T. J. et al. Disease-associated polymorphisms in ERAP1 do not alter endoplasmic reticulum stress in patients with ankylosing spondylitis. Genes Immun. 16, 35–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ciccia, F. et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann. Rheum. Dis. 73, 1566–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Campbell, E. C., Fettke, F., Bhat, S., Morley, K. D. & Powis, S. J. Expression of MHC class I dimers and ERAP1 in an ankylosing spondylitis patient cohort. Immunology 133, 379–385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haroon, N., Tsui, F. W., Uchanska-Ziegler, B., Ziegler, A. & Inman, R. D. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann. Rheum. Dis. 71, 589–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hill, A., Takiguchi, M. & McMichael, A. Different rates of HLA class I molecule assembly which are determined by amino acid sequence in the alpha 2 domain. Immunogenetics 37, 95–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Sanz-Bravo, A., Campos, J., Mazariegos, M. S. & Lopez de Castro, J. A. Dominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 peptidome through differential processing determined by multiple peptide residues. Arthritis Rheumatol. 67, 692–701 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Garcia-Medel, N. et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol. Cell. Proteomics 11, 1416–1429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, L. et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol. 66, 284–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. International Multiple Sclerosis Genetics Consortium. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

  89. Zervoudi, E. et al. Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc. Natl Acad. Sci. USA 110, 19890–19895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Jung, S. H. et al. Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheumatol. 66, 2103–2112 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Ulahannan, N. & Greally, J. M. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 8, 5 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Australo-Anglo-American Spondyloarthritis Consortium (TASC). Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

  95. Karaderi, T. et al. Ankylosing spondylitis is associated with the anthrax toxin receptor 2 gene (ANTXR2). Ann. Rheum. Dis. 73, 2054–2058 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A.B. is funded by a National Health and Medical Research Foundation Senior Principal Research Fellowship. The authors thank A. Hanson for her assistance with Figures 1 and 2.

Author information

Authors and Affiliations

Authors

Contributions

M.A.B. and T.K. researched data for the article. All authors made substantial contributions to discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Matthew A. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, M., Kenna, T. & Wordsworth, B. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol 12, 81–91 (2016). https://doi.org/10.1038/nrrheum.2015.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.133

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research