Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A phenylalanine zipper mediates APS dimerization

Abstract

The APS, SH2-B and LNK proteins are adapters that activate and modulate receptor tyrosine kinase and JAK/STAT signaling. We now show that a conserved N-terminal domain mediates APS homodimerization. We determined the crystal structure of the dimerization domain at a resolution of 1.7 Å using bromide ion MAD phasing. Each molecule contributes two helices to a compact four-helix bundle having a bisecting-U topology. Its most conspicuous feature is a stack of interdigitated phenylalanine side chains at the domain core. These residues create a new motif we refer to as a 'phenylalanine zipper,' which is critical to dimerization. A newly developed bridging yeast tri-hybrid assay showed that APS dimerizes JAK2, insulin receptor and IGF1 receptor kinases using its SH2 and dimerization domains. Dimerization via the phenylalanine zipper domain provides a mechanism for activating and modulating tyrosine kinase activity even in the absence of extracellular ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The APS/SH2-B/Lnk family.
Figure 2: Yeast two-hybrid assays and analytical ultracentrifugation.
Figure 3: Crystal structure of the APS dimerization domain.
Figure 4: Intersection of αN and αC′.
Figure 5: Functional significance of APS dimerization.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lemmon, M.A. & Schlessinger, J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem. Sci. 19, 459–463 (1994).

    Article  CAS  Google Scholar 

  2. Weiss, A. & Schlessinger, J. Switching signals on or off by receptor dimerization. Cell 94, 277–280 (1998).

    Article  CAS  Google Scholar 

  3. Klemm, J.D., Schreiber, S.L. & Crabtree, G.R. Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

    Article  CAS  Google Scholar 

  4. Darnell, J.E., Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  Google Scholar 

  5. Osborne, M.A., Dalton, S. & Kochan, J.P. The yeast tribrid system—genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology 13, 1474–1478 (1995).

    CAS  PubMed  Google Scholar 

  6. Yokouchi, M. et al. Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosphorylated upon B-cell receptor stimulation. Oncogene 15, 7–15 (1997).

    Article  CAS  Google Scholar 

  7. Li, Y., He, X., Schembri-King, J., Jakes, S. & Hayashi, J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J. Immunol. 164, 5199–5206 (2000).

    Article  CAS  Google Scholar 

  8. Takaki, S. et al. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J. Biol. Chem. 272, 14562–14570 (1997).

    Article  CAS  Google Scholar 

  9. Riedel, H., Wang, J., Hansen, H. & Yousaf, N. PSM, an insulin-dependent, pro-rich, PH, SH2 domain containing partner of the insulin receptor. J. Biochem. 122, 1105–1113 (1997).

    Article  CAS  Google Scholar 

  10. Rui, L. & Carter-Su, C. Platelet-derived growth factor (PDGF) stimulates the association of SH2-Bβ with PDGF receptor and phosphorylation of SH2-Bβ. J. Biol. Chem. 273, 21239–21245 (1998).

    Article  CAS  Google Scholar 

  11. Qian, X., Riccio, A., Zhang, Y. & Ginty, D.D. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017–1029 (1998).

    Article  CAS  Google Scholar 

  12. Kotani, K., Wilden, P. & Pillay, T.S. SH2-Bα is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase. Biochem. J. 335, 103–109 (1998).

    Article  CAS  Google Scholar 

  13. Moodie, S.A., Alleman-Sposeto, J. & Gustafson, T.A. Identification of the APS protein as a novel insulin receptor substrate. J. Biol. Chem. 274, 11186–11193 (1999).

    Article  CAS  Google Scholar 

  14. Rui, L., Herrington, J. & Carter-Su, C. SH2-B is required for nerve growth factor-induced neuronal differentiation. J. Biol. Chem. 274, 10590–10594 (1999).

    Article  CAS  Google Scholar 

  15. Wang, J. & Riedel, H. Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J. Biol. Chem. 273, 3136–3139 (1998).

    Article  CAS  Google Scholar 

  16. Wollberg, P., Lennartsson, J., Gottfridsson, E., Yoshimura, A. & Ronnstrand, L. The adapter protein APS associates with the multifunctional docking sites Tyr-568 and Tyr-936 in c-Kit. Biochem. J 370, 1033–1038 (2003).

    Article  CAS  Google Scholar 

  17. Rui, L., Mathews, L.S., Hotta, K., Gustafson, T.A. & Carter-Su, C. Identification of SH2-Bβ as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol. Cell. Biol. 17, 6633–6644 (1997).

    Article  CAS  Google Scholar 

  18. Rui, L. & Carter-Su, C. Identification of SH2-Bβ as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc. Natl. Acad. Sci. USA 96, 7172–7177 (1999).

    Article  CAS  Google Scholar 

  19. Iseki, M., Takaki, S. & Takatsu, K. Molecular cloning of the mouse APS as a member of the Lnk family adaptor proteins. Biochem. Biophys. Res. Commun. 272, 45–54 (2000).

    Article  CAS  Google Scholar 

  20. Wakioka, T. et al. APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 13, 760–767 (1999).

    Article  CAS  Google Scholar 

  21. Ahmed, Z. & Pillay, T.S. Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling. Biochem. J. 371, 405–412 (2003).

    Article  CAS  Google Scholar 

  22. O'Brien, K.B., O'Shea, J.J. & Carter-Su, C. SH2-B family members differentially regulate JAK family tyrosine kinases. J. Biol. Chem. 277, 8673–8681 (2002).

    Article  CAS  Google Scholar 

  23. Ahmed, Z., Smith, B.J. & Pillay, T.S. The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett. 475, 31–34 (2000).

    Article  CAS  Google Scholar 

  24. Liu, J., Kimura, A., Baumann, C.A. & Saltiel, A.R. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol. Cell. Biol. 22, 3599–3609 (2002).

    Article  CAS  Google Scholar 

  25. Takaki, S. et al. Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-modulating proteins. Immunity 13, 599–609 (2000).

    Article  CAS  Google Scholar 

  26. Velazquez, L. et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J. Exp. Med. 195, 1599–1611 (2002).

    Article  CAS  Google Scholar 

  27. Ohtsuka, S. et al. SH2-B is required for both male and female reproduction. Mol. Cell. Biol. 22, 3066–3077 (2002).

    Article  CAS  Google Scholar 

  28. Minami, A. et al. Increased insulin sensitivity and hypoinsulinemia in APS knockout mice. Diabetes 52, 2657–2665 (2003).

    Article  CAS  Google Scholar 

  29. Hu, J., Liu, J., Ghirlando, R., Saltiel, A.R. & Hubbard, S.R. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol. Cell 12, 1379–1389 (2003).

    Article  CAS  Google Scholar 

  30. Qian, X. & Ginty, D.D. SH2-B and APS are multimeric adapters that augment TrkA signaling. Mol. Cell. Biol. 21, 1613–1620 (2001).

    Article  CAS  Google Scholar 

  31. Dauter, Z., Dauter, M. & Rajashankar, K.R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D 56, 232–237 (2000).

    Article  CAS  Google Scholar 

  32. Hill, R.B. & DeGrado, W.F. Solution structure of α2D, a native-like de novo designed protein. J. Am. Chem. Soc. 120, 1138–1145 (1998).

    Article  CAS  Google Scholar 

  33. Hill, R.B., Raleigh, D.P., Lombardi, A. & DeGrado, W.F. De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33, 745–754 (2000).

    Article  CAS  Google Scholar 

  34. Burley, S.K. & Petsko, G.A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  Google Scholar 

  35. Shoelson, S.E., Boni-Schnetzler, M., Pilch, P.F. & Kahn, C.R. Autophosphorylation within insulin receptor β-subunits can occur as an intramolecular process. Biochemistry 30, 7740–7746 (1991).

    Article  CAS  Google Scholar 

  36. Javadpour, M.M. & Barkley, M.D. Self-assembly of designed antimicrobial peptides in solution and micelles. Biochemistry 36, 9540–9549 (1997).

    Article  CAS  Google Scholar 

  37. Otwinowski, T. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  38. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–776 (1994).

  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  41. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  42. Schuck, P. (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619.

    Article  CAS  Google Scholar 

  43. Laue, T.M. Shah, B.D. Ridgeway, T.M. & Pelletier, S.L. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S. & Rowe, A.) 90–125 (Royal Society of Chemistry, London, 1992).

    Google Scholar 

  44. O'Neill, T.J., Craparo, A. & Gustafson, T.A. Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two-hybrid system. Mol. Cell. Biol. 14, 6433–6442 (1994).

    Article  CAS  Google Scholar 

  45. Vidal, M. & Legrain, P. Yeast forward and reverse 'n'-hybrid systems. Nucleic Acids Res. 27, 919–929 (1999).

    Article  CAS  Google Scholar 

  46. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  47. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena and the staff of beamline X12C at National Synchrotron Light Source and D. Frantz and J. Lee for helpful discussions and assistance. These studies were funded by US National Institutes of Health (NIH) grant R01 DK43123 (S.E.S.), Joslin Diabetes and Endocrinology Research Center NIH grant DK36836, fellowships from the Mary K. Iacocca Foundation (S.D. and Y.-I.C.), NIH (R29 DK09393 to E.D.W.), and Sankyo Foundation (M.N.), and the Helen and Morton Adler Chair in Structural Biology (S.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E Shoelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density and controls. (PDF 168 kb)

Supplementary Table 1

MAD phasing data. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhe-Paganon, S., Werner, E., Nishi, M. et al. A phenylalanine zipper mediates APS dimerization. Nat Struct Mol Biol 11, 968–974 (2004). https://doi.org/10.1038/nsmb829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing