Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines

Abstract

Pazopanib and lapatinib are two tyrosine kinase inhibitors that have been designed to inhibit the VEGF tyrosine kinase receptors 1, 2 and 3 (pazopanib), and the HER1 and HER2 receptors in a dual manner (lapatinib). Pazopanib has also been reported to mediate inhibitory effect on a selected panel of additional tyrosine kinases such as PDGFR and c-kit. Here, we report that pazopanib and lapatinib act synergistically to induce apoptosis of A549 non-small-cell lung cancer cells. Systematic assessment of the kinome revealed that both pazopanib and lapatinib inhibited dozens of different tyrosine kinases and that their combination could suppress the activity of some tyrosine kinases (such as c-Met) that were not or only partially affected by either of the two agents alone. We also found that pazopanib and lapatinib induced selective changes in the transcriptome of A549 cells, some of which were specific for the combination of both agents. Analysis of a panel of unrelated human carcinoma cell lines revealed a signature of 52 genes whose up- or downregulation reflected the combined action of pazopanib and lapatinib. Indeed, pazopanib and lapatinib exerted synergistic cytotoxic effects on several distinct non-small-cell lung cancer cells as well as on unrelated carcinomas. Altogether, these results support the contention that combinations of tyrosine kinase inhibitors should be evaluated for synergistic antitumor effects. Such combinations may lead to a ‘collapse’ of pro-survival signal transduction pathways that leads to apoptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barnes CJ, Kumar R . (2003). Epidermal growth factor receptor family tyrosine kinases as signal integrators and therapeutic targets. Cancer Metastasis Rev 22: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Bianco R, Rosa R, Damiano V, Daniele G, Gelardi T, Garofalo S et al. (2008). Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res 14: 5069–5080.

    Article  CAS  PubMed  Google Scholar 

  • Bliss CI . (1939). The toxicity of poisons applied jointly. Ann Appl Biol 26: 585–615.

    Article  CAS  Google Scholar 

  • Bozec A, Formento P, Lassalle S, Lippens C, Hofman P, Milano G . (2007). Dual inhibition of EGFR and VEGFR pathways in combination with irradiation: antitumour supra-additive effects on human head and neck cancer xenografts. Br J Cancer 97: 65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calandrella N, Risuleo G, Scarsella G, Mustazza C, Castelli M, Galati F et al. (2007). Reduction of cell proliferation induced by PD166866: an inhibitor of the basic fibroblast growth factor. J Exp Clin Cancer Res 26: 405–409.

    CAS  PubMed  Google Scholar 

  • Cameron DA, Stein S . (2008). Drug Insight: intracellular inhibitors of HER2—clinical development of lapatinib in breast cancer. Nat Clin Pract Oncol 5: 512–520.

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P et al. (2006). Apoptosis regulation in tetraploid cancer cells. EMBO J 25: 2584–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G . (2002). Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265: 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Chien AJ, Illi JA, Ko AH, Dubey S, Jahan TM, Hylton NM et al. (2008). A phase I dose escalation study of a 2 day lapatinib chemosensitization pulse preceding weekly intravenous nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in patients with advanced cancer. J Clin Oncol 26: Abstract number 3595.

    Article  Google Scholar 

  • Ciardiello F, Tortora G . (2008). EGFR antagonists in cancer treatment. N Engl J Med 358: 1160–1174.

    Article  CAS  PubMed  Google Scholar 

  • Comoglio PM, Giordano S, Trusolino L . (2008). Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7: 504–516.

    Article  CAS  PubMed  Google Scholar 

  • Danilov AV, Klein AK, Lee HJ, Baez DV, Huber BT . (2005). Differential control of G0 programme in chronic lymphocytic leukaemia: a novel prognostic factor. Br J Haematol 128: 472–481.

    Article  PubMed  Google Scholar 

  • de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al. (2007). A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67: 6253–6262.

    Article  CAS  PubMed  Google Scholar 

  • Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN et al. (2007). Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res 13: 6649–6657.

    Article  CAS  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Edinger AL . (2007). Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J 406: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW et al. (2005). Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24: 2647–2653.

    Article  CAS  PubMed  Google Scholar 

  • Flier JS, Mueckler MM, Usher P, Lodish HF . (1987). Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495.

    Article  CAS  PubMed  Google Scholar 

  • Fransson A, Ruusala A, Aspenstrom P . (2003). Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278: 6495–6502.

    Article  CAS  PubMed  Google Scholar 

  • Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. (2006). Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya V, Beviglia L, Xu LH, Earp 3rd HS, Craven R, Cance W . (2002). Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem 277: 38978–38987.

    Article  CAS  PubMed  Google Scholar 

  • Harris PA, Boloor A, Cheung M, Kumar R, Crosby RM, Davis-Ward RG et al. (2008). Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-m ethyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem 51: 4632–4640.

    Article  CAS  PubMed  Google Scholar 

  • Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E et al. (2006). A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 25: 4773–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R et al. (2007). Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther 6: 1629–1640.

    Article  CAS  PubMed  Google Scholar 

  • Helfrich BA, Raben D, Varella-Garcia M, Gustafson D, Chan DC, Bemis L et al. (2006). Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 12: 7117–7125.

    Article  CAS  PubMed  Google Scholar 

  • Houge G, Robaye B, Eikhom TS, Golstein J, Mellgren G, Gjertsen BT et al. (1995). Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol Cell Biol 15: 2051–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulit J, Lee RJ, Russell RG, Pestell RG . (2002). ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochem Pharmacol 64: 827–836.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM et al. (2009). Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15: 4220–4227.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SA, Hunter T . (2005). Kinomics: methods for deciphering the kinome. Nat Methods 2: 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM . (2007). Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res 67: 7929–7936.

    Article  CAS  PubMed  Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26: 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS . (2008). Tumor angiogenesis. N Engl J Med 358: 2039–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawitter J, Zhang YL, Anderson N, Serkova NJ, Christians U . (2009). Development and validation of a sensitive assay for the quantification of imatinib using LC/LC-MS/MS in human whole blood and cell culture. Biomed Chromatogr (e-pub ahead of print 10 June 2009).

  • Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–1639.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC et al. (2007). Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6: 2012–2021.

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK et al. (2007). Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4: e186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . (2002). The protein kinase complement of the human genome. Science 298: 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D et al. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83: 757–766.

    Article  CAS  PubMed  Google Scholar 

  • Mourali J, Benard A, Lourenco FC, Monnet C, Greenland C, Moog-Lutz C et al. (2006). Anaplastic lymphoma kinase is a dependence receptor whose proapoptotic functions are activated by caspase cleavage. Mol Cell Biol 26: 6209–6222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadano D, Sato TA . (2000). Caspase-3-dependent and -independent degradation of 28 S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J Biol Chem 275: 13967–13973.

    Article  CAS  PubMed  Google Scholar 

  • Noble ME, Endicott JA, Johnson LN . (2004). Protein kinase inhibitors: insights into drug design from structure. Science 303: 1800–1805.

    Article  CAS  PubMed  Google Scholar 

  • Oberst MD, Beberman SJ, Zhao L, Yin JJ, Ward Y, Kelly K . (2008). TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation. BMC Cancer 8: 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peruzzi B, Bottaro DP . (2006). Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12: 3657–3660.

    Article  CAS  PubMed  Google Scholar 

  • Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B et al. (1997). Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151: 1523–1530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch EC, Sykes SM, McMahon SB, Murphy ME . (2008). The p53 family and programmed cell death. Oncogene 27: 6507–6521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H et al. (2006). The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103: 19478–19483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Press MF, Finn RS, Cameron D, Di Leo A, Geyer CE, Villalobos IE et al. (2008). HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer. Clin Cancer Res 14: 7861–7870.

    Article  CAS  PubMed  Google Scholar 

  • Puri N, Khramtsov A, Ahmed S, Nallasura V, Hetzel JT, Jagadeeswaran R et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res 67: 3529–3534.

    Article  CAS  PubMed  Google Scholar 

  • Puri N, Salgia R . (2008). Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog 7: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riely GJ, Rizvi NA, Kris MG, Milton DT, Solit DB, Rosen N et al. (2009). Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J Clin Oncol 27: 264–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simiantonaki N, Jayasinghe C, Michel-Schmidt R, Peters K, Hermanns MI, Kirkpatrick CJ . (2008). Hypoxia-induced epithelial VEGF-C/VEGFR-3 upregulation in carcinoma cell lines. Int J Oncol 32: 585–592.

    CAS  PubMed  Google Scholar 

  • Sini P, Samarzija I, Baffert F, Littlewood-Evans A, Schnell C, Theuer A et al. (2008). Inhibition of multiple vascular endothelial growth factor receptors (VEGFR) blocks lymph node metastases but inhibition of VEGFR-2 is sufficient to sensitize tumor cells to platinum-based chemotherapeutics. Cancer Res 68: 1581–1592.

    Article  CAS  PubMed  Google Scholar 

  • Sleijfer S, Wiemer E, Verweij J . (2008). Drug insight: gastrointestinal stromal tumors (GIST)—the solid tumor model for cancer-specific treatment. Nat Clin Pract Oncol 5: 102–111.

    Article  CAS  PubMed  Google Scholar 

  • Sloan B, Scheinfeld NS . (2008). Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs 9: 1324–1335.

    CAS  PubMed  Google Scholar 

  • Sonpavde G, Hutson TE, Sternberg CN . (2008). Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert Opin Investig Drugs 17: 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Storey JD, Tibshirani R . (2003). Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 224: 149–157.

    CAS  PubMed  Google Scholar 

  • Storniolo AM, Pegram MD, Overmoyer B, Silverman P, Peacock NW, Jones SF et al. (2008). Phase I dose escalation and pharmacokinetic study of lapatinib in combination with trastuzumab in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 26: 3317–3323.

    Article  CAS  PubMed  Google Scholar 

  • Thompson HJ, Zhu Z, Jiang W . (2004). Identification of the apoptosis activation cascade induced in mammary carcinomas by energy restriction. Cancer Res 64: 1541–1545.

    Article  CAS  PubMed  Google Scholar 

  • Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L et al. (2007). Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS ONE 2: e1337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wettenhall JM, Smyth GK . (2004). limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20: 3705–3706.

    Article  CAS  PubMed  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH et al. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.

    Article  CAS  PubMed  Google Scholar 

  • Wu B . (2006). Differential gene expression detection and sample classification using penalized linear regression models. Bioinformatics 22: 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Kroemer G . (2004). Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282: 103–115.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GK received grants from Ligue Nationale contre le Cancer (équipe labellisée), Agence Nationale de Recherche, Institut National contre le Cancer, Cancéropôle Ile-de France, European Union (Active p53, ApoSys, ChemoRes, DeathTrain, RIGHT, TransDeath) and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaussen, K., Commo, F., Tailler, M. et al. Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines. Oncogene 28, 4249–4260 (2009). https://doi.org/10.1038/onc.2009.277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.277

Keywords

This article is cited by

Search

Quick links