Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dual engagement of 14-3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome

Abstract

Faithful and efficient transmission of biological signals through mitogen-activated protein kinase (MAPK) pathways requires engagement of highly regulated cellular machinery in response to diverse environmental cues. Here, we report a novel mechanism controlling signal relay between two MAP3Ks, apoptosis signal-regulating kinase (ASK) 1 and ASK2. We show that ASK2 specifically interacts with 14-3-3 proteins through phosphorylated S964. Although a 14-3-3-binding defective mutant of ASK1 (S967A) has no effect on the ASK2/14-3-3 interaction, both overexpression of the analogous ASK2 (S964A) mutant and knockdown of ASK2 dramatically reduced the amount of ASK1 complexed with 14-3-3. These data suggest a dominant role of ASK2 in 14-3-3 control of ASK1 function. Indeed, ASK2 S964A-induced dissociation of 14-3-3 from ASK1 correlated with enhanced phosphorylation of ASK1 at T838 and increased c-Jun N-terminal kinase phosphorylation, the two biological readouts of ASK1 activation. Our results suggest a model in which upstream signals couple ASK2 S964 phosphorylation to the ASK1 signalosome through dual engagement of 14-3-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aitken A . (2006). 14-3-3 proteins: a historic overview. Semin Cancer Biol 16: 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D . (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860–1863.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Klumpp S, Schelling DL . (1989). An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Subramanian RR, Masters SC . (2000). 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.

    Article  CAS  PubMed  Google Scholar 

  • Gardino AK, Smerdon SJ, Yaffe MB . (2006). Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol 16: 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Goldman EH, Chen L, Fu H . (2004). Activation of apoptosis signal-regulating kinase 1 by reactive oxygen species through dephosphorylation at serine 967 and 14-3-3 dissociation. J Biol Chem 279: 10442–10449.

    Article  CAS  PubMed  Google Scholar 

  • Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T et al. (1997). Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Imoto K, Kukidome D, Nishikawa T, Matsuhisa T, Sonoda K, Fujisawa K et al. (2006). Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 55: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  • Iriyama T, Takeda K, Nakamura H, Morimoto Y, Kuroiwa T, Mizukami J et al. (2009). ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. Embo J 28: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumiya Y, Kim S, Izumi Y, Yoshida K, Yoshiyama M, Matsuzawa A et al. (2003). Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling. Circ Res 93: 874–883.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh C . (2004). Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381: 329–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S et al. (2005). ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6: 587–592.

    Article  CAS  PubMed  Google Scholar 

  • Min W, Lin Y, Tang S, Yu L, Zhang H, Wan T et al. (2008). AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation. Circ Res 102: 840–848.

    Article  CAS  PubMed  Google Scholar 

  • Morrison DK . (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19: 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Muslin AJ, Lau JM . (2005). Differential functions of 14-3-3 isoforms in vertebrate development. Curr Top Dev Biol 65: 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS . (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.

    Article  CAS  PubMed  Google Scholar 

  • Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al. (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16: 1345–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osaka N, Takahashi T, Murakami S, Matsuzawa A, Noguchi T, Fujiwara T et al. (2007). ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J Cell Biol 176: 903–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H et al. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273: 16305–16310.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian RR, Zhang H, Wang H, Ichijo H, Miyashita T, Fu H . (2004). Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Exp Cell Res 294: 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Noguchi T, Naguro I, Ichijo H . (2008). Apoptosis signal-regulating kinase 1 in stress and immune response. Annu Rev Pharmacol Toxicol 48: 199–225.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Shimozono R, Noguchi T, Umeda T, Morimoto Y, Naguro I et al. (2007). Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1. J Biol Chem 282: 7522–7531.

    Article  CAS  PubMed  Google Scholar 

  • Thorson JA, Yu LW, Hsu AL, Shih NY, Graves PR, Tanner JW et al. (1998). 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol Cell Biol 18: 5229–5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E et al. (1999). Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38: 12499–12504.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang L, Liddington R, Fu H . (1998a). Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase. J Biol Chem 273: 16297–16304.

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Diener K, Jannuzzi D, Trollinger D, Tan TH, Lichenstein H et al. (1996). Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. J Biol Chem 271: 31607–31611.

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Diener K, Tan TH, Yao Z . (1998b). MAPKKK6, a novel mitogen-activated protein kinase kinase kinase, that associates with MAPKKK5. Biochem Biophys Res Commun 253: 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Winter-Vann AM, Johnson GL . (2007). Integrated activation of MAP3Ks balances cell fate in response to stress. J Cell Biochem 102: 848–858.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB . (2002). How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513: 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H et al. (1997). The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91: 961–971.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen J, Fu H . (1999a). Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci USA 96: 8511–8515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang H, Masters SC, Wang B, Barbieri JT, Fu H . (1999b). Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38: 12159–12164.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, He X, Liu W, Lu M, Hsieh JT, Min W . (2003). AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J Clin Invest 111: 1933–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the past and present members of the Fu laboratory for many stimulating discussions, as well as Zhengbin Yao for helpful suggestions. This work was supported by a National Cancer Institute National Research Service Award Grant 5F31CA117057 and a National Science Foundation Facilitating Academic Careers in Engineering and Science Fellowship 0450303 (I6660663) to LMC, an NIH Pharmacological Sciences Training Grant T32 GM008602 to MCP, NIH Grant RO1GM53165 and Emory URC grant to HF, and NIH/NCI Grant PO1CA116676 and USAMRMC05075002 to FRK and HF. HF is a Georgia Research Alliance Distinguished Investigator, and FRK and HF are Georgia Cancer Coalition Distinguished Cancer Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockrell, L., Puckett, M., Goldman, E. et al. Dual engagement of 14-3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome. Oncogene 29, 822–830 (2010). https://doi.org/10.1038/onc.2009.382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.382

Keywords

This article is cited by

Search

Quick links