Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline

Abstract

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries and is currently incurable due, in part, to difficulty in eliminating the leukemia cells protected by stromal microenvironment. Based on previous observations that CLL cells exhibit mitochondrial dysfunction and altered lipid metabolism and that carnitine palmitoyltransferases (CPT) have a major role in transporting fatty acid into mitochondria to support cancer cell metabolism, we tested several clinically relevant inhibitors of lipid metabolism for their ability to eliminate primary CLL cells. We discovered that perhexiline, an antiangina agent that inhibits CPT, was highly effective in killing CLL cells in stromal microenvironment at clinically achievable concentrations. These effective concentrations caused low toxicity to normal lymphocytes and normal stromal cells. Mechanistic study revealed that CLL cells expressed high levels of CPT1 and CPT2. Suppression of fatty acid transport into mitochondria by inhibiting CPT using perhexiline resulted in a depletion of cardiolipin, a key component of mitochondrial membranes, and compromised mitochondrial integrity, leading to rapid depolarization and massive CLL cell death. The therapeutic activity of perhexiline was further demonstrated in vivo using a CLL transgenic mouse model. Perhexiline significantly prolonged the overall animal survival by only four drug injections. Our study suggests that targeting CPT using an antiangina drug is able to effectively eliminate leukemia cells in vivo, and is a novel therapeutic strategy for potential clinical treatment of CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  2. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.

    Article  CAS  PubMed  Google Scholar 

  4. Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia 2012; 26: 1442–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 2012; 14: 276–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  8. Grdisa M . Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res 2003; 27: 951–956.

    Article  CAS  PubMed  Google Scholar 

  9. Munk Pedersen I, Reed J . Microenvironmental interactions and survival of CLL B-cells. Leuk Lymphoma 2004; 45: 2365–2372.

    Article  CAS  PubMed  Google Scholar 

  10. Hegde GV, Peterson KJ, Emanuel K, Mittal AK, Joshi AD, Dickinson JD et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol Cancer Res 2008; 6: 1928–1936.

    Article  CAS  PubMed  Google Scholar 

  11. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006; 10: 241–252.

    Article  CAS  PubMed  Google Scholar 

  12. Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y et al. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 2008; 112: 1912–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stamatopoulos B, Meuleman N, De Bruyn C, Pieters K, Mineur P, Le Roy C et al. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: pre-clinical evidence for its association with chronic lymphocytic leukemia treatments. Haematologica 2012; 97: 608–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garber K . Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 2004; 96: 1805–1806.

    Article  PubMed  Google Scholar 

  15. Bui T, Thompson CB . Cancer's sweet tooth. Cancer Cell 2006; 9: 419–420.

    Article  CAS  PubMed  Google Scholar 

  16. Garber K . Energy deregulation: licensing tumors to grow. Science 2006; 312: 1158–1159.

    Article  CAS  PubMed  Google Scholar 

  17. Shaw RJ . Glucose metabolism and cancer. Curr Opin Cell Biol 2006; 18: 598–608.

    Article  CAS  PubMed  Google Scholar 

  18. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  19. Nikitin EA, Malakho SG, Biderman BV, Baranova AV, Lorie YY, Shevelev AY et al. Expression level of lipoprotein lipase and dystrophin genes predict survival in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2007; 48: 912–922.

    Article  CAS  PubMed  Google Scholar 

  20. Lupu R, Menendez JA . Pharmacological inhibitors of fatty acid synthase (FASN)—catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr Pharm Biotechnol 2006; 7: 483–493.

    Article  CAS  PubMed  Google Scholar 

  21. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011; 17: 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DeFilippis RA, Chang H, Dumont N, Rabban JT, Chen YY, Fontenay GV et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov 2012; 2: 826–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2012; 2: 328–343.

    Article  CAS  PubMed  Google Scholar 

  24. Oltra AM, Carbonell F, Tormos C, Iradi A, Saez GT . Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic Biol Med 2001; 30: 1286–1292.

    Article  CAS  PubMed  Google Scholar 

  25. Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P . Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 2003; 17: 1437–1447.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P . Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098–4104.

    Article  CAS  PubMed  Google Scholar 

  27. Olivecrona T, Hultin M, Bergo M, Olivecrona G . Lipoprotein lipase: regulation and role in lipoprotein metabolism. Proc Nutr Soc 1997; 56: 723–729.

    Article  CAS  PubMed  Google Scholar 

  28. Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R . Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002; 13: 471–481.

    Article  CAS  PubMed  Google Scholar 

  29. Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  30. Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005; 106: 650–657.

    Article  CAS  PubMed  Google Scholar 

  31. Bilban M, Heintel D, Scharl T, Woelfel T, Auer MM, Porpaczy E et al. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 2006; 20: 1080–1088.

    Article  CAS  PubMed  Google Scholar 

  32. van't Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland WJ et al. The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 2006; 91: 56–63.

    CAS  PubMed  Google Scholar 

  33. Pallasch CP, Schwamb J, Konigs S, Schulz A, Debey S, Kofler D et al. Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 2008; 22: 585–592.

    Article  CAS  PubMed  Google Scholar 

  34. Kaderi MA, Kanduri M, Buhl AM, Sevov M, Cahill N, Gunnarsson R et al. LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic lymphocytic leukemia. Haematologica 2011; 96: 1153–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abreu C, Moreno P, Palacios F, Borge M, Morande P, Landoni AI et al. Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 1844–1848.

    Article  CAS  PubMed  Google Scholar 

  36. Moreno P, Abreu C, Borge M, Palacios F, Morande P, Pegazzano M et al. Lipoprotein lipase expression in unmutated CLL patients is the consequence of a demethylation process induced by the microenvironment. Leukemia 2013; 27: 721–725.

    Article  CAS  PubMed  Google Scholar 

  37. Porpaczy E, Tauber S, Bilban M, Kostner G, Gruber M, Eder S et al. Lipoprotein lipase in chronic lymphocytic leukaemia—strong biomarker with lack of functional significance. Leuk Res 2013; 37: 631–636.

    Article  CAS  PubMed  Google Scholar 

  38. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr . Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18: 153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singlas E, Goujet MA, Simon P . Pharmacokinetics of perhexiline maleate in anginal patients with and without peripheral neuropathy. Eur J Clin Pharmacol 1978; 14: 195–201.

    Article  CAS  PubMed  Google Scholar 

  40. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y . Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 2000; 351: 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nuckel H, Huttmann A, Klein-Hitpass L, Schroers R, Fuhrer A, Sellmann L et al. Lipoprotein lipase expression is a novel prognostic factor in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2006; 47: 1053–1061.

    Article  PubMed  Google Scholar 

  42. Liu J, Chen G, Feng L, Zhang W, Pelicano H, Wang F et al. Loss of p53 and altered miR15-a/16-1 short right arrow MCL-1 pathway in CLL: insights from TCL1-Tg:p53(−/−) mouse model and primary human leukemia cells. Leukemia 2014; 28: 118–128.

    Article  CAS  PubMed  Google Scholar 

  43. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pandey PR, Liu W, Xing F, Fukuda K, Watabe K . Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat Anticancer Drug Discov 2012; 7: 185–197.

    Article  CAS  PubMed  Google Scholar 

  45. Vasconcelos Y, De Vos J, Vallat L, Reme T, Lalanne AI, Wanherdrick K et al. Gene expression profiling of chronic lymphocytic leukemia can discriminate cases with stable disease and mutated Ig genes from those with progressive disease and unmutated Ig genes. Leukemia 2005; 19: 2002–2005.

    Article  CAS  PubMed  Google Scholar 

  46. Taylor WA, Xu FY, Ma BJ, Mutter TC, Dolinsky VW, Hatch GM . Expression of monolysocardiolipin acyltransferase activity is regulated in concert with the level of cardiolipin and cardiolipin biosynthesis in the mammalian heart. BMC Biochem 2002; 3: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Okayasu T, Curtis MT, Farber JL . Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys 1985; 236: 638–645.

    Article  CAS  PubMed  Google Scholar 

  48. Nakahara I, Kikuchi H, Taki W, Nishi S, Kito M, Yonekawa Y et al. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg 1992; 76: 244–250.

    Article  CAS  PubMed  Google Scholar 

  49. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang P, Sandoval A, Van Den Neste E, Keating MJ, Plunkett W . Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia 2000; 14: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  51. Carew JS, Nawrocki ST, Xu RH, Dunner K, McConkey DJ, Wierda WG et al. Increased mitochondrial biogenesis in primary leukemia cells: the role of endogenous nitric oxide and impact on sensitivity to fludarabine. Leukemia 2004; 18: 1934–1940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank BA Hayes and R LaPushin for their assistance in handling CLL samples. This work was supported, in part, by a grant from Natural Science Foundation of China (No. 81430060), Grants CA085563 and CA172724 from the National Institutes of Health, and a grant for the CLL Global Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, PP., Liu, J., Jiang, WQ. et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene 35, 5663–5673 (2016). https://doi.org/10.1038/onc.2016.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.103

This article is cited by

Search

Quick links