Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Personal exposure to PM2.5 oxidative potential and its association to birth outcomes

Abstract

Background

Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes.

Objectives

We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration.

Methods

405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders.

Results

The correlation between PM2.5 mass concentration and \(OP_v^{DTT}\) was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, −64 g, −166 to −11, p = 0.02) and height (−4 mm, −6 to −1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (−53 g, −99 to −8, p = 0.02) and height (−2 mm, −5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with \(OP_v^{DTT}\) was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for \(OP_v^{AA}\) with any growth parameter.

Impact

PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart for the study selection process.
Fig. 2: Causal diagram summarizing the hypothesized associations of oxidative potential (OP) of PM2.5 to foetal growth and other factors possibly acting as confounders in an epidemiologic study of air pollution effects on foetal growth restrictions.
Fig. 3: Map of Europe (left) and the cohort study area (right) with average personal PM2.5 mass concentration (µg/m3) corresponding to the volunteers’ home address.
Fig. 4: Overview of measured personal exposures.

Similar content being viewed by others

Data availability

The readers may contact the corresponding authors for data requests. General information on the SEPAGES cohort is made publicly available at https://cohorte-sepages.fr/en.

References

  1. Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, et al. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut. 2019;247:874–82.

    Article  CAS  PubMed  Google Scholar 

  2. Sun X, Luo X, Zhao C, Zhang B, Tao J, Yang Z, et al. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: a meta-analysis. Environ Pollut. 2016;211:38–47.

    Article  CAS  PubMed  Google Scholar 

  3. Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allemand L, Andersen A-MN, et al. Elemental constituents of particulate matter and newborn’s size in eight European cohorts. Environ Health Perspect. 2016;124:141–50.

    Article  CAS  PubMed  Google Scholar 

  4. Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings. Environ Sci Technol. 2014;48:7576–83.

    Article  CAS  PubMed  Google Scholar 

  5. Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ Sci Technol. 2019;53:4003–19.

    Article  CAS  PubMed  Google Scholar 

  6. Shi T, Knaapen AM, Begerow J, Birmili W, Borm PJA, Schins RPF. Temporal variation of hydroxyl radical generation and 8-hydroxy-2’-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med. 2003;60:315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nel A. ATMOSPHERE: enhanced: air pollution-related illness: effects of particles. Science. 2005;308:804–6.

    Article  CAS  PubMed  Google Scholar 

  8. Kelly FJ, Mudway IS. Protein oxidation at the air-lung interface. Amino Acids. 2003;25:375–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mudway IS, Stenfors N, Duggan ST, Roxborough H, Zielinski H, Marklund SL, et al. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch Biochem Biophys. 2004;423:200–12.

    Article  CAS  PubMed  Google Scholar 

  10. Landreman AP, Shafer MM, Hemming JC, Hannigan MP, Schauer JJ. A Macrophage-Based Method for the Assessment of the Reactive Oxygen Species (ROS) Activity of Atmospheric Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring Studies. Aerosol Sci Technol. 2008;42:946–57.

    Article  CAS  Google Scholar 

  11. Liu L, Urch B, Szyszkowicz M, Evans G, Speck M, Van Huang A, et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ Int. 2018;121:1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Chen H, Li X, Wang M, Zhang X, Cao J, et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos Environ. 2019;212:305–15.

    Article  CAS  Google Scholar 

  13. Bates JT, Weber RJ, Abrams J, Verma V, Fang T, Klein M, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ Sci Technol. 2015;49:13605–12.

    Article  CAS  PubMed  Google Scholar 

  14. Weichenthal S, Crouse DL, Pinault L, Godri-Pollitt K, Lavigne E, Evans G, et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Res. 2016;146:92–99.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Staimer N, Tjoa T, Gillen DL, Schauer JJ, Shafer MM, et al. Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential. Environ Health. 2016;15:81.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weichenthal S, Lavigne E, Evans G, Pollitt K, Burnett RT. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ Health. 2016;15:46.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abrams JY, Weber RJ, Klein M, Sarnat SE, Chang HH, Strickland MJ, et al. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits. Environ Health Perspect. 2017;125:107008.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gauvin S, Reungoat P, Cassadou S, Déchenaux J, Momas I, Just J, et al. Contribution of indoor and outdoor environments to PM2.5 personal exposure of children—VESTA study. Sci Total Environ. 2002;297:175–81.

    Article  CAS  PubMed  Google Scholar 

  19. Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, et al. The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environ Res. 2020;181:108919.

    Article  CAS  PubMed  Google Scholar 

  20. Chen X-C, Chuang H-C, Ward TJ, Sarkar C, Webster C, Cao J, et al. Toxicological effects of personal exposure to fine particles in adult residents of Hong Kong. Environ Pollut. 2021;275:116633.

    Article  CAS  PubMed  Google Scholar 

  21. George S, Chua ML, ZheWei DZ, Das R, Bijin VA, Connolly JE, et al. Personal level exposure and hazard potential of particulate matter during haze and non-haze periods in Singapore. Chemosphere. 2020;243:125401.

    Article  PubMed  Google Scholar 

  22. He L, Norris C, Cui X, Li Z, Barkjohn KK, Brehmer C, et al. Personal exposure to PM 2.5 oxidative potential in association with pulmonary pathophysiologic outcomes in children with asthma. Environ Sci Technol. 2021;55:3101–11.

    Article  CAS  PubMed  Google Scholar 

  23. Shah PS, Balkhair T. Air pollution and birth outcomes: a systematic review. Environ Int. 2011;37:498–516.

    Article  CAS  PubMed  Google Scholar 

  24. Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol. 2006;169:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang X, Liu Z, Liu J, Hu B, Wen T, Tang G et al. Chemical characterization and synergetic source apportionment of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmos Chem Phys Discuss. 2017;17:1–34.

  26. Rashid CS, Bansal A, Simmons RA. Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology. 2018;33:348–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, et al. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenet. 2019;11:124.

    Article  CAS  Google Scholar 

  28. Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med. 2016;9:113–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lavigne É, Burnett RT, Stieb DM, Evans GJ, Godri Pollitt KJ, Chen H, et al. Fine particulate air pollution and adverse birth outcomes: effect modification by regional nonvolatile oxidative potential. Environ Health Perspect. 2018;126:077012.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mostofsky E, Schwartz J, Coull BA, Koutrakis P, Wellenius GA, Suh HH, et al. Modeling the association between particle constituents of air pollution and health outcomes. Am J Epidemiol. 2012;176:317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borlaza LJS, Weber S, Jaffrezo J-L, Houdier S, Slama R, Rieux C, et al. Disparities in particulate matter (PM<sub>10</sub>) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM<sub>10</sub> oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis. Atmos Chem Phys. 2021;21:9719–39.

    Article  CAS  Google Scholar 

  32. Borlaza LJS, Weber S, Uzu G, Jacob V, Cañete T, Micallef S, et al. Disparities in particulate matter (PM<sub>10</sub>) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: Source apportionment at three neighbouring sites. Atmos Chem Phys. 2021;21:5415–37.

    Article  CAS  Google Scholar 

  33. INSEE. Naissances de 2014 à 2020. Institut national de la statistique et des études économiques: France https://www.insee.fr/fr/statistiques/1893255 (accessed 22 Sep 2020).

  34. Calas A, Uzu G, Martins JMF, Voisin D, Spadini L, Lacroix T, et al. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci Rep. 2017;7:11617.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res. 2005;99:40–47.

    Article  CAS  PubMed  Google Scholar 

  36. van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–42.

    Article  PubMed  Google Scholar 

  37. Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen A-MN, Ballester F, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respiratory Med. 2013;1:695–704.

    Article  CAS  Google Scholar 

  38. Ouidir M, Seyve E, Rivière E, Bernard J, Cheminat M, Cortinovis J, et al. Maternal ambient exposure to atmospheric pollutants during pregnancy and offspring term birth weight in the nationwide ELFE cohort. IJERPH. 2021;18:5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115:1118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fossati S, Valvi D, Martinez D, Cirach M, Estarlich M, Fernández-Somoano A, et al. Prenatal air pollution exposure and growth and cardio-metabolic risk in preschoolers. Environ Int. 2020;138:105619.

    Article  CAS  PubMed  Google Scholar 

  41. Fu L, Chen Y, Yang X, Yang Z, Liu S, Pei L, et al. The associations of air pollution exposure during pregnancy with fetal growth and anthropometric measurements at birth: a systematic review and meta-analysis. Environ Sci Pollut Res. 2019;26:20137–47.

    Article  CAS  Google Scholar 

  42. Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, et al. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect. 2004;112:1398–402.

    Article  PubMed  PubMed Central  Google Scholar 

  43. U.S. EPA. Air Quality Criteria for Particulate Matter. Fourth External Review Draft. U.S. Environmental Protection Agency: Washington D.C., 2003.

  44. Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114:1636–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1–13.

    Google Scholar 

  46. Kim Y, Hong Y, Lee K, Park H, Park E, Moon H, et al. Oxidative stress in pregnant women and birth weight reduction. Reprod Toxicol. 2005;19:487–92.

    Article  CAS  PubMed  Google Scholar 

  47. Yang A, Janssen NAH, Brunekreef B, Cassee FR, Hoek G, Gehring U. Children’s respiratory health and oxidative potential of PM 2.5: the PIAMA birth cohort study. Occup Environ Med. 2016;73:154–60.

    Article  PubMed  Google Scholar 

  48. Lyon-Caen S, Siroux V, Lepeule J, Lorimier P, Hainaut P, Mossuz P, et al. Deciphering the impact of early-life exposures to highly variable environmental factors on foetal and child health: design of SEPAGES couple-child cohort. IJERPH. 2019;16:3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rothman KJ, Gallacher JE, Hatch EE. Why representativeness should be avoided. Int J Epidemiol. 2013;42:1012–4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7:147–77.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The SEPAGES cohort study group includes: E. Eyriey, A. Licinia, A. Vellement (Groupe Hospitalier Mutualiste, Grenoble), I. Pin, P. Hofmann, E. Hullo, C. Llerena (Grenoble University Hospital, La Tronche), X. Morin (Clinique des Cèdres, Echirolles), A. Morlot (Clinique Belledonne, Saint-Martin d’Hères), J. Lepeule, S. Lyon-Caen, C. Philippat, J. Quentin, V. Siroux, R. Slama (Inserm, CNRS, University Grenoble Alpes IAB research center). We thank Mrs. A. Benlakhryfa, Mrs. L. Borges, Mr. Y. Gioria, clinical research assistants; Mrs. J. Giraud, Mrs. M. Marceau, Mrs. M-P. Martin, nurses; Mrs. E. Charvet, Mrs A. Putod, midwives; Mrs. M. Graca, Mrs. K.Gridel, Mrs. C. Pelini, Mrs Maïlys Barbagallo fieldworkers; Mrs. A.Bossant, K. Guichardet, J-T Iltis A. Levanic, C. Martel, E. Quinteiro, S.Raffin neuropsychologists; the staff from Grenoble Center for Clinical Investigation (CIC): Prof. J.-L. Cracowski, Dr. C. Cracowski, Dr. E. Hodaj, Mrs. D. Abry, Mr. N. Gonnet and Mrs. A. Tournier. A warm thank you also to Dr. M. Althuser, Mr. S. Althuser, Dr. F. Camus-Chauvet, Mr. P. Dusonchet, Mrs. S. Dusonchet, Dr. L. Emery, Mrs. P.Fabbrizio, Prof. P. Hoffmann, Dr. D. Marchal André, Dr. X. Morin, Dr. E.Opoix, Dr. L. Pacteau, Dr. P. Rivoire, Mrs. A. Royannais, Dr. C.Tomasella, Dr. T. Tomasella, Dr. D. Tournadre, Mr. P. Viossat, Mrs. E.Volpi, Mrs. S. Rey, Dr. E. Warembourg and clinicians from Grenoble University Hospital for their support in the recruitment of the study volunteers. We also thank Mrs. A. Buchet, Mrs. SF. Caraby, Dr. J-N.Canonica, Mrs. J. Dujourdil, Dr. E. Eyriey, Prof. P. Hoffmann, Mrs. M.Jeannin, Mrs. A. Licina, Dr. X. Morin, Mrs. A. Nicolas, and all midwives from the four maternity wards of Grenoble urban areas. SEPAGES data are stored thanks to Inserm RE-CO-NAI platform funded by Commissariat Général à l’Investissement, with the implication of Sophiede Visme (Inserm DSI). Many thanks to Dr. M.A. Charles, RE-CO-NAI coordinator, for her support. Finally, and importantly, we would like to express our sincere thanks to participants of the SEPAGES study. The SEPAGES cohort was supported by the European Research Council (N°311765-E-DOHaD), the European Community’s Seventh Framework Programme (FP7/2007-206 - N°308333-892 HELIX), the European Union’s Horizon 2020 research and innovation program (N° 874583 ATHLETE Project, N°825712 OBERON Project), the French Research Agency - ANR (PAPER project ANR-12-PDOC-0029-01, SHALCOH project ANR-14-CE21-0007, ANR-15-IDEX-02 and ANR-15-IDEX5, GUMME project ANR-18-CE36-005, ETAPE project ANR - EDeN project ANR -19-CE36-0003-01), the French Agency for Food, Environmental and Occupational Health & Safety - ANSES (CNAP project EST-2016-121, PENDORE project EST-2016-121, HyPAxE project EST-2019/1/039), the Plan Cancer (Canc’Air project), the French Cancer Research Foundation Association de Recherche sur le Cancer – ARC, the French Endowment Fund AGIR for chronic diseases – APMC (projects PRENAPAR and LCI-FOT), the French Endowment Fund for Respiratory Health, the French Fund – Fondation de France (CLIMATHES – 00081169, SEPAGES 5 - 00099903).We acknowledge the support of ANSES, Inserm and AGIR pour les maladies chroniques, for SEPAGES feasibility study. The support of “SCUSI 2017” Région Auvergne-Rhône-Alpes programme is also acknowledged. OP analysis were supported by the MobilAir program (ANR-15-IDEX-02) and ANR Get OP Stand OP program (ANR-19-CE34-0002-01), and were analyzed at the Air-O-Sol facility at IGE, made possible with the funding of some laboratory equipment by the Labex OSUG@2020 (ANR10 LABX56). The postdoc of Lucille Joanna Borlaza is funded by the Predict’air project (grant Fondation UGA-UGA 2022-16 and grant PR-PRE-2021 FUGA-Fondation Air Liquide).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

GU, JLJ, and RS designed the study and the statistical analysis protocol. GU developed the OP assays for the group. LJSB, AM, and SW processed the data. SLC, JL, and AB handled all data management of the SEPAGES cohort. LJSB wrote the paper. GU, JLJ, and RS revised the original draft. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Gaëlle Uzu or Rémy Slama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlaza, L.J.S., Uzu, G., Ouidir, M. et al. Personal exposure to PM2.5 oxidative potential and its association to birth outcomes. J Expo Sci Environ Epidemiol 33, 416–426 (2023). https://doi.org/10.1038/s41370-022-00487-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-022-00487-w

Keywords

This article is cited by

Search

Quick links