Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine

Abstract

Parvalbumin-expressing (PV+) interneurons of the nucleus accumbens (NAc) play an essential role in the addictive-like behaviors induced by psychostimulant exposure. To identify molecular mechanisms of PV+ neuron plasticity, we isolated interneuron nuclei from the NAc of male and female mice following acute or repeated exposure to amphetamine (AMPH) and sequenced for cell type-specific RNA expression and chromatin accessibility. AMPH regulated the transcription of hundreds of genes in PV+ interneurons, and this program was largely distinct from that regulated in other NAc GABAergic neurons. Chromatin accessibility at enhancers predicted cell-type specific gene regulation, identifying transcriptional mechanisms of differential AMPH responses. Finally, we assessed expression of PV-enriched, AMPH-regulated genes in an Mecp2 mutant mouse strain that shows heightened behavioral sensitivity to psychostimulants to explore the functional importance of this transcriptional program. Together these data provide novel insight into the cell-type specific programs of transcriptional plasticity in NAc neurons that underlie addictive-like behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: INTACT-mediated isolation of PV+ and SST+ GABAergic interneuron nuclei from mouse NAc.
Fig. 2: AMPH induces an overlapping program of rapid PRGs in distinct populations of NAc GABAergic neurons.
Fig. 3: Cell-type specific programs of gene expression regulated 3 h after AMPH administration in different populations of NAc GABAergic neurons.
Fig. 4: Cell-type specific and post-AMPH chromatin accessibility in NAc neurons.
Fig. 5: Single-nucleus RNA-seq reveals molecular heterogeneity of PV+ interneurons in the NAc.
Fig. 6: Motif analysis of differentially accessible chromatin near AMPH-regulated genes suggests transcriptional mechanisms of gene regulation in NAc neurons.
Fig. 7: Gene regulation in NAc PV+ neurons of MeCP2 Ser421Ala knockin mice.

Similar content being viewed by others

Data availability

RNA and ATAC sequencing data have been deposited at GEO (GSE181421). All primary data are stored on a secure server at Duke University and are available from the corresponding author.

Code availability

Full coding implementation of all analysis tools can be found in complete alignment/analysis pipelines available at https://github.com/WestLabDuke/Psychostimulant-NAcInterneuron.

References

  1. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    Article  CAS  PubMed  Google Scholar 

  2. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Feng J, Shao N, Szulwach KE, Vialou V, Huynh J, Zhong C, et al. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci. 2015;18:536–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lopez AJ, Siciliano CA, Calipari ES. Activity-dependent epigenetic remodeling in cocaine use disorder. Handb Exp Pharmacol. 2020;258:231–63.

    Article  CAS  PubMed  Google Scholar 

  5. Nord AS, West AE. Neurobiological functions of transcriptional enhancers. Nat Neurosci. 2020;23:5–14.

    Article  CAS  PubMed  Google Scholar 

  6. Tepper JM, Tecuapetla F, Koos T, Ibanez-Sandoval O. Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat. 2010;4:150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science. 2010;330:1677–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ribeiro EA, Salery M, Scarpa JR, Calipari ES, Hamilton PJ, Ku SM, et al. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun. 2018;9:3149.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Deng JV, Rodriguiz RM, Hutchinson AN, Kim I-H, Wetsel WC, West AE. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci. 2010;13:1128–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron. 2011;72:72–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Deng JV, Wan Y, Wang X, Cohen S, Wetsel WC, Greenberg ME, et al. MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci. 2014;34:4519–27.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Koos T, Tepper JM. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci. 1999;2:467–72.

    Article  CAS  PubMed  Google Scholar 

  13. Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry. 2021;26:234–46.

    Article  PubMed  Google Scholar 

  14. Wiltschko AB, Pettibone JR, Berke JD. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons. Neuropsychopharmacology. 2010;35:1261–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Winters BD, Kruger JM, Huang X, Gallaher ZR, Ishikawa M, Czaja K, et al. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci USA. 2012;109:E2717–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yu J, Yan Y, Li KL, Wang Y, Huang YH, Urban NN, et al. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci USA. 2017;114:E8750-E8759.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang X, Gallegos DA, Pogorelov VM, O’Hare JK, Calakos N, Wetsel WC, et al. Parvalbumin interneurons of the mouse nucleus accumbens are required for amphetamine-induced locomotor sensitization and conditioned place preference. Neuropsychopharmacology. 2018;43:953–63.

    Article  CAS  PubMed  Google Scholar 

  18. Trouche S, Koren V, Doig NM, Ellender TJ, El-Gaby M, Lopes-Dos-Santos V, et al. A hippocampus-accumbens tripartite neuronal motif guides appetitive memory in space. Cell. 2019;176:1393–406.e16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron. 2015;86:1369–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep. 2018;8:9588.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat Methods. 2019;16:619–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA. 2009;106:13939–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci. 2021. https://doi.org/10.1038/s41593-021-00938-x.

  25. Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG, Malenka RC, et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Rep. 2016;16:1126–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE. 2018;13:e0209648.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Massengill JL, Smith MA, Son DI, O’Dowd DK. Differential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes. J Neurosci. 1997;17:3136–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jaglin XH, Hjerling-Leffler J, Fishell G, Batista-Brito R. The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Front Neural Circuits. 2012;6:44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tyssowski KM, DeStefino NR, Cho JH, Dunn CJ, Poston RG, Carty CE, et al. Different neuronal activity patterns induce different gene expression programs. Neuron. 2018;98:530–46.e11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, et al. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science. 2014;346:1256780.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Penrod RD, Thomsen M, Taniguchi M, Guo Y, Cowan CW, Smith LN. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol Biochem Behav. 2020;188:172818.

    Article  CAS  PubMed  Google Scholar 

  32. Szumlinski KK, Dehoff MH, Kang SH, Frys KA, Lominac KD, Klugmann M, et al. Homer proteins regulate sensitivity to cocaine. Neuron. 2004;43:401–13.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Edwards JG, Riley N, Provance DW Jr., Karcher R, Li XD, et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell. 2008;135:535–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, et al. CUL3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of cap-dependent translation. Neuron. 2020;105:475–90.e6.

    Article  CAS  PubMed  Google Scholar 

  35. Cho KI, Haque M, Wang J, Yu M, Hao Y, Qiu S, et al. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors. PLoS Genet. 2013;9:e1003555.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. King IF, Yandava CN, Mabb AM, Hsiao JS, Huang HS, Pearson BL, et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013;501:58–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP, et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell. 2014;157:1216–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rowlands D, Lensjo KK, Dinh T, Yang S, Andrews MR, Hafting T, et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci. 2018;38:10102–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lasek AW, Chen H, Chen WY. Releasing addiction memories trapped in perineuronal nets. Trends Genet. 2018;34:197–208.

    Article  CAS  PubMed  Google Scholar 

  40. Karayannis T, Au E, Patel JC, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi I, Mannion BJ, et al. Ultraconserved enhancers are required for normal development. Cell. 2018;172:491–9.e15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Frank CL, Liu F, Wijayatunge R, Song L, Biegler MT, Yang MG, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011;21:1757–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Su Y, Shin J, Zhong C, Wang S, Roychowdhury P, Lim J, et al. Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat Neurosci. 2017;20:476–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fernandez-Albert J, Lipinski M, Lopez-Cascales MT, Rowley MJ, Martin-Gonzalez AM, Del Blanco B, et al. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nat Neurosci. 2019;22:1718–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Marco A, Meharena HS, Dileep V, Raju RM, Davila-Velderrain J, Zhang AL, et al. Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble. Nat Neurosci. 2020;23:1606–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18:527–35.

    Article  CAS  PubMed  Google Scholar 

  48. Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D, Arnedillo RA, et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat Neurosci. 2020;23:1456–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kim H, Berens NC, Ochandarena NE, Philpot BD. Region and cell type distribution of TCF4 in the postnatal mouse brain. Front Neuroanat. 2020;14:42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Dehorter N, Ciceri G, Bartolini G, Lim L, del Pino I, Marin O. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science. 2015;349:1216–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pulipparacharuvil S, Renthal W, Hale CF, Taniguchi M, Xiao G, Kumar A, et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron. 2008;59:621–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fonseca GJ, Tao J, Westin EM, Duttke SH, Spann NJ, Strid T, et al. Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nat Commun. 2019;10:414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA 3rd, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci. 2018;21:120–9.

    Article  CAS  PubMed  Google Scholar 

  55. Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sanchez-Aguilera A, Mantoan L, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–55.e10.

    Article  CAS  PubMed  Google Scholar 

  56. Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol Cell. 2017;68:1067–82.e12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Clemens AW, Wu DY, Moore JR, Christian DL, Zhao G, Gabel HW. MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol Cell. 2020;77:279–93.e8.

    Article  CAS  PubMed  Google Scholar 

  58. Boxer LD, Renthal W, Greben AW, Whitwam T, Silberfeld A, Stroud H, et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol Cell. 2020;77:294–309.e9.

    Article  CAS  PubMed  Google Scholar 

  59. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523:486–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 2017;543:519–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xiaoting Wang, Alexias Safi, and Greg Crawford for assistance with experiments. We thank Chris McGinnis for assistance in disambiguating Multi-seq LMOs. The Duke University School of Medicine Sequencing and Genomic Technologies Shared Resource provided sequencing services and the Duke University Mouse Behavioral and Neuroendocrine Analysis Core Facility provided equipment and support for the mouse behavioral studies. FANS was performed in the Immunology Unit of the Regional Biocontainment Laboratory at Duke, which receives support from NIH grant UC6-AI058607. This work was supported by NIH grants R01DA047115 and R33DA041878 (AEW).

Author information

Authors and Affiliations

Authors

Contributions

DAG and AEW conceived of and designed the study. DAG, MM, FL, MFH, SAY, and LCB acquired and analyzed data. DAG and AEW wrote the paper with feedback from other authors. All authors read and approved the submitted version of the study.

Corresponding author

Correspondence to Anne E. West.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallegos, D.A., Minto, M., Liu, F. et al. Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine. Mol Psychiatry 28, 3414–3428 (2023). https://doi.org/10.1038/s41380-022-01466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01466-1

Search

Quick links