Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cIAP1/TRAF2 interplay promotes tumor growth through the activation of STAT3

Abstract

Cellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2. However, the cIAP1/TRAF2 complex exists, independently of receptor engagement, in several subcellular compartments. The present work strengthens the importance of TRAF2 in the oncogenic properties of cIAP1. cIAPs-deficient mouse embryonic fibroblasts (MEFs) were transformed using the HRas-V12 oncogene. Re-expression of cIAP1 enhanced tumor growth in a nude mice xenograft model, and promoted lung tumor nodes formation. Deletion or mutation of the TRAF2-binding site completely abolished the oncogenic properties of cIAP1. Further, cIAP1 mediated the clustering of TRAF2, which was sufficient to stimulate tumor growth. Our TRAF2 interactome analysis showed that cIAP1 was critical for TRAF2 to bind to its protein partners. Thus, cIAP1 and TRAF2 would be two essential subunits of a signaling complex promoting a pro-tumoral signal. cIAP1/TRAF2 promoted the activation of the canonical NF-κB and ERK1/2 signaling pathways. NF-κB-dependent production of IL-6 triggered the activation of the JAK/STAT3 axis in an autocrine manner. Inhibition or downregulation of STAT3 specifically compromised the growth of cIAP1-restored MEFs but not that of MEFs expressing a cIAP1-mutant and treating mice with the STAT3 inhibitor niclosamide completely abrogated cIAP1/TRAF2-mediated tumor growth. Altogether, we demonstrate that cIAP1/TRAF2 binding is essential to promote tumor growth via the activation of the JAK/STAT3 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRAF2 binding is critical for the oncogenic activity of cIAP1.
Fig. 2: Forced clustering of TRAF2 stimulated tumor growth, independently of cIAP1.
Fig. 3: TRAF2 interactome.
Fig. 4: TRAF2 binding is essential for the activation of the canonical NF-κB and ERK1/2 signaling pathways.
Fig. 5: cIAP1 and TRAF2 are critical for the activation of the JAK/STAT3 signaling pathways.
Fig. 6: STAT3 signaling pathway is required for cIAP1-mediated tumor cell growth.

Similar content being viewed by others

Data availability

Figshare https://doi.org/10.6084/m9.figshare.21399906.

References

  1. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243–52.

  2. Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and disease. Genes Immun. 2019;20:641–50.

    Article  Google Scholar 

  3. Dumetier B, Zadoroznyj A, Dubrez L IAP-mediated protein ubiquitination in regulating cell signaling. Cells 2020;9:1118.

  4. Zadoroznyj A, Dubrez L Cytoplasmic and nuclear functions of cIAP1. Biomolecules 2022;12:322.

  5. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006;125:1253–67.

    Article  CAS  Google Scholar 

  6. Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ, et al. MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 2009;69:2559–67.

    Article  CAS  Google Scholar 

  7. Cheng L, Zhou Z, Flesken-Nikitin A, Toshkov IA, Wang W, Camps J, et al. Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2, and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene 2010;29:5700–11.

    Article  CAS  Google Scholar 

  8. Jin J, Xiao Y, Hu H, Zou Q, Li Y, Gao Y, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun. 2015;6:5930.

    Article  CAS  Google Scholar 

  9. Yin Q, Lamothe B, Darnay BG, Wu H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry. 2009;48:10558–67.

    Article  CAS  Google Scholar 

  10. Dhillon B, Aleithan F, Abdul-Sater Z, Abdul-Sater AA. The evolving role of TRAFs in mediating inflammatory responses. Front Immunol. 2019;10:104.

    Article  CAS  Google Scholar 

  11. Marivin A, Berthelet J, Cartier J, Paul C, Gemble S, Morizot A, et al. cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation. Oncogene 2014;33:5534–45.

    Article  CAS  Google Scholar 

  12. Vischioni B, Giaccone G, Span SW, Kruyt FA, Rodriguez JA. Nuclear shuttling and TRAF2-mediated retention in the cytoplasm regulate the subcellular localization of cIAP1 and cIAP2. Exp Cell Res. 2004;298:535–48.

    Article  CAS  Google Scholar 

  13. Zhou AY, Shen RR, Kim E, Lock YJ, Xu M, Chen ZJ, et al. IKKepsilon-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep. 2013;3:724–33.

    Article  CAS  Google Scholar 

  14. Dupoux A, Cartier J, Cathelin S, Filomenko R, Solary E, Dubrez-Daloz L. cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 2009;113:175–85.

    Article  CAS  Google Scholar 

  15. Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 controls death receptor-induced Caspase-8 processing and facilitates proinflammatory signaling. Front Immunol. 2019;10:2024.

    Article  CAS  Google Scholar 

  16. Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol. 2010;400:8–15.

    Article  CAS  Google Scholar 

  17. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010;38:101–13.

    Article  Google Scholar 

  18. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13:1297–308.

    Article  CAS  Google Scholar 

  19. Tang Z, Li C, Kang B, Gao G, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  Google Scholar 

  20. Csomos RA, Brady GF, Duckett CS. Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. J Biol Chem. 2009;284:20531–9.

    Article  CAS  Google Scholar 

  21. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol. 2008;9:1364–70.

    Article  CAS  Google Scholar 

  22. Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002;416:345–7.

    Article  Google Scholar 

  23. Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008;321:663–8.

    Article  CAS  Google Scholar 

  24. Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA. 1996;93:13973–8.

    Article  CAS  Google Scholar 

  25. Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharm. 2016;116:1–10.

    Article  CAS  Google Scholar 

  26. Ceccarelli A, Di Venere A, Nicolai E, De Luca A, Minicozzi V, Rosato N, et al. TNFR-associated Factor-2 (TRAF2): Not only a trimer. Biochemistry 2015;54:6153–61.

    Article  CAS  Google Scholar 

  27. Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell. 1999;4:321–30.

    Article  CAS  Google Scholar 

  28. Park HH. Structure of TRAF family: Current understanding of receptor recognition. Front Immunol. 2018;9:1999.

    Article  Google Scholar 

  29. Peng C, Zhu F, Wen W, Yao K, Li S, Zykova T, et al. Tumor necrosis factor receptor-associated factor family protein 2 is a key mediator of the epidermal growth factor-induced ribosomal S6 kinase 2/cAMP-responsive element-binding protein/Fos protein signaling pathway. J Biol Chem. 2012;287:25881–92.

    Article  CAS  Google Scholar 

  30. Dubrez L, Berthelet J, Glorian V. IAP proteins as targets for drug development in oncology. OncoTargets Ther. 2013;9:1285–304.

    Article  Google Scholar 

  31. Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016;5:15.

  32. Vu NT, Park MA, Shultz MD, Bulut GB, Ladd AC, Chalfant CE. Caspase-9b interacts directly with cIAP1 to drive agonist-independent activation of NF-κB and lung tumorigenesis. Cancer Res. 2016;76:2977–89.

    Article  CAS  Google Scholar 

  33. Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J, et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell. 2007;28:914–22.

    Article  CAS  Google Scholar 

  34. Li H, Fang Y, Niu C, Cao H, Mi T, Zhu H, et al. Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Proc Natl Acad Sci USA. 2018;115:E9317–24.

    CAS  Google Scholar 

  35. Bishop GA, Abdul-Sater AA, Watts TH. Editorial: TRAF proteins in health and disease. Front Immunol. 2019;10:326.

    Article  CAS  Google Scholar 

  36. Sondarva G, Kundu CN, Mehrotra S, Mishra R, Rangasamy V, Sathyanarayana P, et al. TRAF2-MLK3 interaction is essential for TNF-alpha-induced MLK3 activation. Cell Res. 2010;20:89–98.

    Article  CAS  Google Scholar 

  37. Korchnak AC, Zhan Y, Aguilar MT, Chadee DN. Cytokine-induced activation of mixed lineage kinase 3 requires TRAF2 and TRAF6. Cell Signal. 2009;21:1620–5.

    Article  CAS  Google Scholar 

  38. Zhao Y, Conze DB, Hanover JA, Ashwell JD. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem. 2007;282:7777–82.

    Article  CAS  Google Scholar 

  39. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell. 1998;2:389–95.

    Article  CAS  Google Scholar 

  40. Chadee DN, Yuasa T, Kyriakis JM. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol. 2002;22:737–49.

    Article  CAS  Google Scholar 

  41. Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol Med. 2018;24:49–65.

    Article  CAS  Google Scholar 

  42. Dogan T, Harms GS, Hekman M, Karreman C, Oberoi TK, Alnemri ES, et al. X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nat Cell Biol. 2008;10:1447–55.

    Article  CAS  Google Scholar 

  43. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, and TRAF3 and the kinase NIK. Nat Immunol. 2008;9:1371–8.

    Article  CAS  Google Scholar 

  44. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  Google Scholar 

  45. Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, et al. Genetic alterations of TRAF proteins in human cancers. Front Immunol. 2018;9:2111.

    Article  Google Scholar 

  46. Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, et al. Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ. 2008;15:859–66.

    Article  CAS  Google Scholar 

  47. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015;15:2597–601.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pauline Maes from the CLIPP proteomic platform, University of Burgundy, Philippe Hammann from the Strasbourg proteomic platform, IBMC, Valérie Saint-Gorgio from zootechny center, University of Burgundy, and Romain Aucagne from the Crigen platform, University of Burgundy. This work was supported by grants from the ‘Comités de Côte d’Or et de l’Yonne’ of the ‘Ligue Contre le Cancer’ (LD), La Ligue Nationale contre le Cancer (CG’s team), the European Union and the ‘Conseil Régional de Bourgogne’, a French Government grant managed by the French National Research Agency under the program ‘Investissements d’Avenir’ with reference ANR-11-LABX-0021, and fellowships from the ‘Ministère de l’Enseignement Supérieur et de la Recherche’ of France (to BD, AZ, JB and JA), the ‘Fondation ARC pour la Recherche sur le Cancer’ (to BD). We thank the FEDER for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

BD and AZ performed most of the experiments and analyzed the data. JB initiated the project, established the tumor model, and performed some in vivo experiments. SC performed immunofluorescence analysis. JA, PB, and FC helped in performing western blots, clonogenicity assays, and in vivo experiments. CR and CP brought expertise in in vivo model and performed IV injection. CG provided scientific expertise and corrected the paper and LD conceived and supervised the project, conducted the GEPIA analysis, analyzed the data and interpreted the results, wrote the paper with input from all authors.

Corresponding author

Correspondence to Laurence Dubrez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumétier, B., Zadoroznyj, A., Berthelet, J. et al. cIAP1/TRAF2 interplay promotes tumor growth through the activation of STAT3. Oncogene 42, 198–208 (2023). https://doi.org/10.1038/s41388-022-02544-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02544-y

This article is cited by

Search

Quick links