Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma

Abstract

Aberrantly elevated O-GlcNAcylation level is commonly observed in human cancer patients, and has been proposed as a potential therapeutic target. Speckle-type POZ protein (SPOP), an important substrate adaptor of cullin3-RING ubiquitin ligase, plays a key role in the initiation and development of various cancers. However, the regulatory mechanisms governing SPOP and its function during hepatocellular carcinoma (HCC) progression remain unclear. Here, we show that, in HCC, SPOP is highly O-GlcNAcylated by O-GlcNAc transferase (OGT) at Ser96. In normal liver cells, the SPOP protein mainly localizes in the cytoplasm and mediates the ubiquitination of the oncoprotein neurite outgrowth inhibitor-B (Nogo-B) (also known as reticulon 4 B) by recognizing its N-terminal SPOP-binding consensus (SBC) motifs. However, O-GlcNAcylation of SPOP at Ser96 increases the nuclear positioning of SPOP in hepatoma cells, alleviating the ubiquitination of the Nogo-B protein, thereby promoting HCC progression in vitro and in vivo. In addition, ablation of O-GlcNAcylation by an S96A mutation increased the cytoplasmic localization of SPOP, thereby inhibiting the Nogo-B/c-FLIP cascade and HCC progression. Our findings reveal a novel post-translational modification of SPOP and identify a novel SPOP substrate, Nogo-B, in HCC. Intervention with the hyper O-GlcNAcylation of SPOP may provide a novel strategy for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPOP is dynamically O-GlcNAcylated at Ser96.
Fig. 2: O-GlcNAcylation promotes the nuclear localization of SPOP in HCC cells.
Fig. 3: SPOP O-GlcNAcylation promotes HCC progression in vitro and in vivo.
Fig. 4: SPOP-Nogo-B interaction mediates the ubiquitination of Nogo-B.
Fig. 5: SPOP ubiquitinates Nogo-B through its N-terminal domain.
Fig. 6: SPOP O-GlcNAcylation modulates the ubiquitination of Nogo-B and tumor growth.
Fig. 7: O-GlcNAcylation of SPOP strengthens Nogo-B function and correlates with HCC progression.
Fig. 8: O-GlcNAcylation of SPOP promotes HCC progression.

Similar content being viewed by others

Data availability

The original mass spectrometry analysis data of SPOP-interacting proteins were uploaded to integrated proteome resource (iProX, PXD038208). All relevant data are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  3. Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017;86:123–8.

    Article  CAS  PubMed  Google Scholar 

  4. Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301–7.

    Article  CAS  PubMed  Google Scholar 

  5. Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol. 2016;17:626–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  CAS  PubMed  Google Scholar 

  7. Yu Z, Li H, Zhu J, Wang H, Jin X. The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res. 2022;12:1179–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark A, Burleson M. SPOP and cancer: a systematic review. Am J Cancer Res. 2020;10:704–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li XM, Wu HL, Xia QD, Zhou P, Wang SG, Yu X, et al. Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother. 2022;149:112882.

    Article  CAS  PubMed  Google Scholar 

  10. Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell. 2018;72:19–36.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ju LG, Zhu Y, Long QY, Li XJ, Lin X, Tang SB, et al. SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ. 2019;26:1156–68.

    Article  CAS  PubMed  Google Scholar 

  13. Shi L, Yan Y, He Y, Yan B, Pan Y, Orme JJ, et al. Mutated SPOP E3 ligase promotes 17betaHSD4 protein degradation to drive androgenesis and prostate cancer progression. Cancer Res. 2021;81:3593–606.

    Article  CAS  PubMed  Google Scholar 

  14. Shi Q, Zhu Y, Ma J, Chang K, Ding D, Bai Y, et al. Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol Cancer. 2019;18:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theurillat JP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science. 2014;346:85–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mani RS. The emerging role of speckle-type POZ protein (SPOP) in cancer development. Drug Discov Today. 2014;19:1498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia D, Dong R, Jing Y, Xu D, Wang Q, Chen L, et al. Exome sequencing of hepatoblastoma reveals novel mutations and cancer genes in the Wnt pathway and ubiquitin ligase complex. Hepatology. 2014;60:1686–96.

    Article  CAS  PubMed  Google Scholar 

  18. He W, Zhang J, Liu B, Liu X, Liu G, Xie L, et al. S119N mutation of the E3 ubiquitin ligase SPOP suppresses SLC7A1 degradation to regulate hepatoblastoma progression. Mol Ther Oncolytics. 2020;19:149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji P, Liang S, Li P, Xie C, Li J, Zhang K, et al. Speckle-type POZ protein suppresses hepatocellular carcinoma cell migration and invasion via ubiquitin-dependent proteolysis of SUMO1/sentrin specific peptidase 7. Biochem Biophys Res Commun. 2018;502:30–42.

    Article  CAS  PubMed  Google Scholar 

  20. Li G, Ci W, Karmakar S, Chen K, Dhar R, Fan Z, et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell. 2014;25:455–68.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chatham JC, Zhang J, Wende AR. Role of O-linked N-acetylglucosamine protein modification in cellular (Patho)physiology. Physiol Rev. 2021;101:427–93.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Gong W, Wang H, Li T, Attri KS, Lewis RE, et al. O-GlcNAc transferase suppresses inflammation and necroptosis by targeting receptor-interacting serine/threonine-protein kinase 3. Immunity. 2019;50:576–90.e576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory responsedagger. Cardiovasc Res. 2014;103:131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ning J, Yang H. O-GlcNAcylation in hyperglycemic pregnancies: impact on placental function. Front Endocrinol. 2021;12:659733.

    Article  Google Scholar 

  25. Wang Q, Fang P, He R, Li M, Yu H, Zhou L, et al. O-GlcNAc transferase promotes influenza A virus-induced cytokine storm by targeting interferon regulatory factor-5. Sci Adv. 2020;6:eaaz7086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saha A, Bello D, Fernandez-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev. 2021;50:10451–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG, et al. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 2010;29:3787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, et al. Regulation of the Hippo-YAP Pathway by Glucose Sensor O-GlcNAcylation. Mol Cell. 2017;68:591–604 e595.

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li YK, Xie YJ, Wu DC, Long SL, Tang S, Mo ZC. NogoB receptor in relevant carcinoma: Current achievements, challenges and aims (Review). Int J Oncol. 2018;53:1827–35.

    CAS  PubMed  Google Scholar 

  32. Liu X, Cui SJ, Zhu SJ, Geng DC, Yu L. Nogo-C contributes to HCC tumorigenesis via suppressing cell growth and its interactome analysis with comparative proteomics research. Int J Clin Exp Pathol. 2014;7:2044–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang N, Cui Y, Li Y, Mi Y. A Novel role of nogo proteins: regulating macrophages in inflammatory disease. Cell Mol Neurobiol. 2021;42:2439–48.

    Article  PubMed  Google Scholar 

  34. He W, Huang X, Berges BK, Wang Y, An N, Su R, et al. Artesunate regulates neurite outgrowth inhibitor protein B receptor to overcome resistance to sorafenib in hepatocellular carcinoma cells. Front Pharmacol. 2021;12:615889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawaguchi N, Tashiro K, Taniguchi K, Kawai M, Tanaka K, Okuda J, et al. Nogo-B (Reticulon-4B) functions as a negative regulator of the apoptotic pathway through the interaction with c-FLIP in colorectal cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:2600–9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–95.

    Article  CAS  PubMed  Google Scholar 

  37. Nikhil K, Haymour HS, Kamra M, Shah K. Phosphorylation-dependent regulation of SPOP by LIMK2 promotes castration-resistant prostate cancer. Br J Cancer. 2021;124:995–1008.

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, Ma J, Botuyan MV, Cui G, Yan Y, Ding D, et al. ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Sci Adv. 2021;7:eabd9208.

  39. de Queiroz RM, Carvalho E, Dias WB. O-GlcNAcylation: the sweet side of the cancer. Front Oncol. 2014;4:132.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu J, Gao Q, Yang Y, Xia J, Zhang W, Chen Y, et al. Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Theranostics. 2021;11:805–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu W, Zhang X, Wu JL, Fu L, Liu K, Liu D, et al. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J Hepatol. 2017;67:310–20.

    Article  CAS  PubMed  Google Scholar 

  42. Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol. 2018;68:1191–202.

    Article  CAS  PubMed  Google Scholar 

  43. Huang H, Wu Q, Guo X, Huang T, Xie X, Wang L, et al. O-GlcNAcylation promotes the migratory ability of hepatocellular carcinoma cells via regulating FOXA2 stability and transcriptional activity. J Cell Physiol. 2021;236:7491–503.

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Gou D, Xiang J, Pan X, Gao Q, Zhou P, et al. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene. 2021;40:6707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Song Y, Ye M, Dai X, Zhu X, Wei W. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 2020;17:339–50.

    Article  CAS  PubMed  Google Scholar 

  46. Hu YH, Wang Y, Wang F, Dong YM, Jiang WL, Wang YP, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association. Cell Mol Immunol. 2021;18:1708–17.

    Article  CAS  PubMed  Google Scholar 

  47. Tan W, Jiang P, Zhang W, Hu Z, Lin S, Chen L, et al. Posttranscriptional regulation of de novo lipogenesis by glucose-induced O-GlcNAcylation. Mol Cell. 2021;81:1890–904.e1897.

    Article  CAS  PubMed  Google Scholar 

  48. Nagai Y, Kojima T, Muro Y, Hachiya T, Nishizawa Y, Wakabayashi T, et al. Identification of a novel nuclear speckle-type protein, SPOP. FEBS Lett. 1997;418:23–26.

    Article  CAS  PubMed  Google Scholar 

  49. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, et al. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J. 2016;35:1254–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li F, Zheng LD, Chen X, Zhao X, Briggs SD, Du HN. Gcn5-mediated Rph1 acetylation regulates its autophagic degradation under DNA damage stress. Nucleic Acids Res. 2017;45:5183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao L, Utsumi T, Tashiro K, Liu B, Zhang D, Swenson ES, et al. Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation and liver regeneration in mice. Hepatology. 2013;57:1992–2003.

    Article  CAS  PubMed  Google Scholar 

  53. Tian Y, Yang B, Qiu W, Hao Y, Zhang Z, Yang B, et al. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic reprogramming of oxLDL lipophagy. Nat Commun. 2019;10:3391.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang D, Utsumi T, Huang HC, Gao L, Sangwung P, Chung C, et al. Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis. Hepatology. 2011;53:1306–15.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang S, Guo F, Yu M, Yang X, Yao Z, Li Q, et al. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J Hepatol. 2020;73:1482–95.

    Article  CAS  PubMed  Google Scholar 

  56. Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, et al. Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res. 2021;49:6788–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.

    Article  CAS  PubMed  Google Scholar 

  58. Gang X, Xuan L, Zhao X, Lv Y, Li F, Wang Y, et al. Speckle-type POZ protein suppresses lipid accumulation and prostate cancer growth by stabilizing fatty acid synthase. Prostate. 2019;79:864–71.

    Article  CAS  PubMed  Google Scholar 

  59. Jin X, Shi Q, Li Q, Zhou L, Wang J, Jiang L, et al. CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-kappaB signaling. Leukemia. 2020;34:1305–14.

    Article  CAS  PubMed  Google Scholar 

  60. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27(Kip1) axis. J Exp Clin Cancer Res. 2019;38:50.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Investig. 2021;131:e144703.

Download references

Acknowledgements

The authors acknowledge Prof. Dr. T.-C He (University of Chicago, USA) and Prof. Ding Xue (Tsinghua University, China) for providing the pAdEasy and CRISPR/Cas9 system. We also thank Prof. Bing Sun (Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China) for kindly providing pLL3.7 and pMSCV2.2-IRES-GFP vectors.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. U20A20392, AH; 82072286, NT; 82073251, KW), the 111 Project (No. D20028, AH), the Innovative and Entrepreneurial Team of Chongqing Talents Plan, Natural Science Foundation Project of Chongqing (cstc2019jscx-dxwtBX0019, NT), Chongqing Medical Scientific Research Project (Joint project of Chongqing Health Commission and Science and Technology Bureau, 2023DBXM007, NT), Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University, Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0036, NT; W0101, KW), and Science and Technology Research Program of Chongqing Municipal Education Commission grants HZ2021006 (NT) and JZD-M202000401 (NT).

Author information

Authors and Affiliations

Authors

Contributions

NT, KW and ALH designed the experiments; PZ, WYC and DAG performed and analyzed the data; PZ, WYC, DAG. LYH, RL, YL and JX contributed materials and data, and assisted in data analysis; PZ, WYC, KW and NT wrote and edited the paper.

Corresponding authors

Correspondence to Kai Wang, Ni Tang or Ai-long Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Chang, Wy., Gong, Da. et al. O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene 42, 725–736 (2023). https://doi.org/10.1038/s41388-022-02589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02589-z

This article is cited by

Search

Quick links