Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis

Abstract

Despite the promise of targeted tyrosine kinase inhibitors (TKIs), such as sunitinib, in the extension of survival time in patients with clear cell renal cell carcinoma (ccRCC) progression or metastasis, the patients eventually succumb to inevitable drug resistance. Protein degradation executed by the ubiquitin-dependent proteasome system played an important role in determining the sensitivity of ccRCC to sunitinib. Here, we applied the bioinformatic analysis to identify that E3 ligase RBCK1 was elevated in the sunitinib-resistant renal cancer cell lines or patient specimens. The subsequent in vitro or in vivo studies demonstrated that RBCK1 contributed to decreasing the sensitivity of ccRCC to sunitinib. Then, we showed that inhibition of RBCK1 inactivated the AKT and MAPK signaling pathways, which might be one of the main reasons why RBCK1 induces sunitinib resistance in ccRCC cells. Mechanistically, our results indicated that RBCK1 promotes the degradation of ANKRD35 and that ANKRD35 destabilizes MITD1 by binding with SUMO2 in ccRCC cells. In addition, we showed that the RBCK1-ANKRD35-MITD1-ANXA1 axis regulates the phosphorylation of AKT and ERK and contributes to the dysregulation of sunitinib in ccRCC cells. Therefore, we identified a novel mechanism for regulating the sensitivity of sunitinib in ccRCC. Therefore, we elucidated a novel mechanism by which RBCK1 regulates sunitinib sensitivity in ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrantly expressed RBCK1 contributes to decreased sensitivity of sunitinib in ccRCC cells.
Fig. 2: RBCK1 is involved in multiple cancer-promoting pathways.
Fig. 3: RBCK1 regulates the sensitivity of sunitinib in ccRCC.
Fig. 4: RBCK1 promotes ANKRD35 degradation to reduce the sensitivity of ccRCC cells to sunitinib.
Fig. 5: The ANKRD35 binding partner MITD1 decreases sensitivity to sunitinib in ccRCC cells.
Fig. 6: The ANKRD35-SUMO2 complex destabilizes MITD1 in ccRCC cells.
Fig. 7: The RBCK1-ANKRD35-MITD1 axis regulates sunitinib sensitivity in ccRCC.
Fig. 8: ANXA1 is a common downstream gene of the RBCK1-ANKRD35-MITD1 axis responsible for decreasing the sensitivity of sunitinib in ccRCC cells.
Fig. 9: A hypothesis model depicting that RBCK1 interacted with ANKRD35 to promote the degradation of ANKRD35 in ccRCC cells.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request. The original western blot data has been submitted to the figshare repository (https://doi.org/10.6084/m9.figshare.21557733). The sequencing data was deposited in the GEO public dataset (GSE214635).

References

  1. Wettersten HI, Aboud OA, Lara PN Jr, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13:410–9.

    Article  CAS  PubMed  Google Scholar 

  2. Pontes O, Oliveira-Pinto S, Baltazar F, Costa M. Renal cell carcinoma therapy: current and new drug candidates. Drug Discov Today. 2022;27:304–14.

    Article  CAS  PubMed  Google Scholar 

  3. Xie Y, Shangguan W, Chen Z, Zheng Z, Chen Y, Zhong Q, et al. Establishment of sunitinib-resistant xenograft model of renal cell carcinoma and the identification of drug-resistant hub genes and pathways. Drug Des Dev Ther. 2021;15:5061–74.

    Article  CAS  Google Scholar 

  4. Rizzo M, Porta C. Sunitinib in the treatment of renal cell carcinoma: an update on recent evidence. Ther Adv Urol. 2017;9:195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aeppli S, Schmaus M, Eisen T, Escudier B, Grunwald V, Larkin J, et al. First-line treatment of metastatic clear cell renal cell carcinoma: a decision-making analysis among experts. ESMO Open. 2021;6:100030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat Rev. 2018;70:127–37.

    Article  CAS  PubMed  Google Scholar 

  7. Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in renal cell carcinoma drug resistance models. Front Oncol. 2022;12:870396.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vu LD, Gevaert K, De Smet I. Protein language: post-translational modifications talking to each other. Trends Plant Sci. 2018;23:1068–80.

    Article  CAS  PubMed  Google Scholar 

  9. Gajjala PR, Fliser D, Speer T, Jankowski V, Jankowski J. Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol Dial Transplant. 2015;30:1814–24.

    Article  CAS  PubMed  Google Scholar 

  10. Czuba LC, Hillgren KM, Swaan PW. Post-translational modifications of transporters. Pharmcol Ther. 2018;192:88–99.

    Article  CAS  Google Scholar 

  11. Hanna J, Guerra-Moreno A, Ang J, Micoogullari Y. Protein degradation and the pathologic basis of disease. Am J Pathol. 2019;189:94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Y, Li H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell. 2013;4:103–16.

    Article  PubMed  Google Scholar 

  13. Ling Q, Broad W, Trosch R, Topel M, Demiral Sert T, Lymperopoulos P, et al. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science. 2019;363:eaav4467.

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Chen J, Huang X, Zhang E, He J, Cai Z. Novel Insights Into E3 Ubiquitin Ligase in Cancer Chemoresistance. Am J Med Sci. 2018;355:368–76.

    Article  PubMed  Google Scholar 

  15. Beasley SA, Safadi SS, Barber KR, Shaw GS. Solution structure of the E3 ligase HOIL-1 Ubl domain. Protein Sci. 2012;21:1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu ML, Zang F, Zhang SJ. RBCK1 contributes to chemoresistance and stemness in colorectal cancer (CRC). Biomed Pharmacother. 2019;118:109250.

    Article  CAS  PubMed  Google Scholar 

  17. Yu S, Dai J, Ma M, Xu T, Kong Y, Cui C, et al. RBCK1 promotes p53 degradation via ubiquitination in renal cell carcinoma. Cell Death Dis. 2019;10:254.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiong W, Zhang B, Yu H, Zhu L, Yi L, Jin X. RRM2 regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway. Adv Sci. 2021;8:e2100881.

    Article  Google Scholar 

  19. Cheng G, Liu Y, Liu L, Ruan H, Cao Q, Song Z, et al. LINC00160 mediates sunitinib resistance in renal cell carcinoma via SAA1 that is implicated in STAT3 activation and compound transportation. Aging. 2020;12:17459–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dufies M, Verbiest A, Cooley LS, Ndiaye PD, He X, Nottet N, et al. Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun Biol. 2021;4:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.

    Article  CAS  PubMed  Google Scholar 

  22. Kelsall IR, Zhang J, Knebel A, Arthur JSC, Cohen P. The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proc Natl Acad Sci USA. 2019;116:13293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayward D, Kouznetsova VL, Pierson HE, Hasan NM, Guzman ER, Tsigelny IF, et al. ANKRD9 is a metabolically-controlled regulator of IMPDH2 abundance and macro-assembly. J Biol Chem. 2019;294:14454–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Sheng Y. Prognostic impact of MITD1 and associates with immune infiltration in kidney renal clear cell carcinoma. Technol Cancer Res Treat. 2021;20:15330338211036233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mo Y, Wang Y, Zhang S, Xiong F, Yan Q, Jiang X, et al. Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol Cancer. 2021;20:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Ye K, Li X, Liu X, Peng M, Chen F, et al. YTHDC1 is downregulated by the YY1/HDAC2 complex and controls the sensitivity of ccRCC to sunitinib by targeting the ANXA1-MAPK pathway. J Exp Clin Cancer Res. 2022;41:250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding J, Kuang P. Regulation of ERalpha stability and estrogen signaling in breast cancer by HOIL-1. Front Oncol. 2021;11:664689.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang G, Zhuang Z, Shen S, Yang F, Jiang Z, Liu Z, et al. Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Hum Cell. 2022;35:896–908.

    Article  CAS  PubMed  Google Scholar 

  29. Cong M, Wang Y, Yang Y, Lian C, Zhuang X, Li X, et al. MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. Nat Cancer. 2020;1:222–34.

    Article  CAS  PubMed  Google Scholar 

  30. Ruiz-Arenas C, Caceres A, Lopez M, Pelegri-Siso D, Gonzalez J, Gonzalez JR. Identifying chromosomal subpopulations based on their recombination histories advances the study of the genetic basis of phenotypic traits. Genome Res. 2020;30:1802–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee S, Chang J, Renvoise B, Tipirneni A, Yang S, Blackstone C. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis. Mol Biol Cell. 2012;23:4347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agromayor M, Martin-Serrano J. Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol. 2013;23:433–41.

    Article  CAS  PubMed  Google Scholar 

  33. Abu-Ghanem Y, van Thienen JV, Blank C, Aarts MJB, Jewett M, de Jong IJ, et al. Cytoreductive nephrectomy and exposure to sunitinib - a post hoc analysis of the Immediate Surgery or Surgery After Sunitinib Malate in Treating Patients With Metastatic Kidney Cancer (SURTIME) trial. BJU Int. 2022;130:68–75.

    Article  CAS  PubMed  Google Scholar 

  34. Liu W, Ren D, Xiong W, Jin X, Zhu L. A novel FBW7/NFAT1 axis regulates cancer immunity in sunitinib-resistant renal cancer by inducing PD-L1 expression. J Exp Clin Cancer Res. 2022;41:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Chinese National Natural Science Foundation Grant No. 82073321 (XJ), 82272910 (XJ) and 82103341 (WX). Excellent Youth Foundation of Hunan Scientific Committee (Grant No. 2022JJ10092, XJ). Hunan leading program for science and technology innovation of high technology industries (Grant No. 2022GK4020, XJ). Central South University Innovation-Driven Research Programme (Grant No. 2023CXQD059, XJ). Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ30870 (LZ), 2022JJ40719 (WX)).

Author information

Authors and Affiliations

Authors

Contributions

YW: Methodology; MP: Methodology; YZ: Methodology; WX: Investigation, conceptualization; LZ: Investigation, project administration; XJ: Methodology, project administration, investigation.

Corresponding authors

Correspondence to Liang Zhu or Xin Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki principles (Approved no. 2021068). It was approved by the Animal Use and Care Committees at the Second Xiangya hospital, Central South University.

Consent for publication

All subjects have written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, M., Zhong, Y. et al. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Oncogene 42, 952–966 (2023). https://doi.org/10.1038/s41388-023-02613-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02613-w

Search

Quick links