Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis

A Correction to this article was published on 16 April 2024

This article has been updated

Abstract

Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo genome-wide screening for activation and inhibition of gene expression results in metastasis of prostate cancer cells.
Fig. 2: Identification and analysis of metastasis hits in all genome-wide screens.
Fig. 3: Functional validation of CITED2 as a driver of prostate cancer bone metastasis.
Fig. 4: Transcriptional outcome of CITED2 overexpression and relevance to human prostate cancer patients.

Similar content being viewed by others

Data availability

Sequencing raw counts and differentially expressed sgRNAs are included in the manuscript tables. Plasmids and sgRNA libraries are available from Addgene. Code used for analysis is available at https://sourceforge.net/p/mageck/wiki/Home/. RNAseq data was deposited in GEO, accession number GSE253815.

Change history

References

  1. Hernandez RK, Wade SW, Reich A, Pirolli M, Liede A, Lyman GH. Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States. BMC Cancer. 2018;18:44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate. 2014;74:210–6.

    Article  PubMed  Google Scholar 

  3. Arriaga JM, Abate-Shen C. Genetically engineered mouse models of prostate cancer in the postgenomic era. Cold Spring Harb Perspect Med. 2019;9:a030528.

  4. Grabowska MM, DeGraff DJ, Yu X, Jin RJ, Chen Z, Borowsky AD, et al. Mouse models of prostate cancer: picking the best model for the question. Cancer Metastasis Rev. 2014;33:377–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  6. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160:1246–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bajaj J, Hamilton M, Shima Y, Chambers K, Spinler K, Van Nostrand EL, et al. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nat Cancer. 2020;1:410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell. 2019;178:1189–204.e1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai M, Yan G, Wang N, Daliah G, Edick AM, Poulet S, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun. 2021;12:3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yau EH, Kummetha IR, Lichinchi G, Tang R, Zhang Y, Rana TM. Genome-wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 2017;77:6330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng L, Sun J, Pretlow TG, Culp J, Yang NS. CWR22 xenograft as an ex vivo human tumor model for prostate cancer gene therapy. J Natl Cancer Inst. 1996;88:607–11.

    Article  CAS  PubMed  Google Scholar 

  19. Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S, Sy MS, et al. A new human prostate carcinoma cell line, 22Rv1. Vitr Cell Dev Biol Anim. 1999;35:403–9.

    Article  CAS  Google Scholar 

  20. Kovar JL, Johnson MA, Volcheck WM, Chen J, Simpson MA. Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am J Pathol. 2006;169:1415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Preston Campbell J, Mulcrone P, Masood SK, Karolak M, Merkel A, Hebron K, et al. TRIzol and Alu qPCR-based quantification of metastatic seeding within the skeleton. Sci Rep. 2015;5:12635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife. 2016;5:e19760.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ronaldson-Bouchard K, Teles D, Yeager K, Tavakol DN, Zhao Y, Chramiec A, et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022;6:351–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 2017;7:736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, et al. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. Nat Cancer. 2020;1:1082–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin SH, Lee GY, Lee M, Kang J, Shin HW, Chun YS, et al. Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway. Nat Commun. 2018;9:4113.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999;13:64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, et al. CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell Death Differ. 2012;19:2015–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu C, Zhang Y, Tang K, Luo Y, Liu Y, Chen W. Downregulation of CITED2 contributes to TGFbeta-mediated senescence of tendon-derived stem cells. Cell Tissue Res. 2017;368:93–104.

    Article  CAS  PubMed  Google Scholar 

  31. Mattes K, Berger G, Geugien M, Vellenga E, Schepers H. CITED2 affects leukemic cell survival by interfering with p53 activation. Cell Death Dis. 2017;8:e3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell. 2018;34:996–1011.e1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 1996;2:1627–36.

    CAS  PubMed  Google Scholar 

  34. Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE. 2012;7:e35569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  36. Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D, et al. Combined MYC activation and pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res. 2016;76:283–92.

    Article  CAS  PubMed  Google Scholar 

  37. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  38. Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, et al. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol. 2020;99:151098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jayaraman S, Doucet M, Lau WM, Kominsky SL. CITED2 modulates breast cancer metastatic ability through effects on IKKalpha. Mol Cancer Res. 2016;14:730–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lau WM, Weber KL, Doucet M, Chou YT, Brady K, Kowalski J, et al. Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2. Int J Cancer. 2010;126:876–84.

    Article  CAS  PubMed  Google Scholar 

  41. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawson H, van de Lagemaat LN, Barile M, Tavosanis A, Durko J, Villacreces A, et al. CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Rep. 2021;16:2784–97.

    Article  CAS  Google Scholar 

  43. Wang H, Zhang W, Bado I, Zhang XH. Bone tropism in cancer metastases. Cold Spring Harb Perspect Med. 2020;10:a036848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Easterly ME, Foltz CJ, Paulus MJ. Body condition scoring: comparing newly trained scorers and micro-computed tomography imaging. Lab Anim. 2001;30:46–49.

    CAS  Google Scholar 

  45. Villasante A, Marturano-Kruik A, Robinson ST, Liu Z, Guo XE, Vunjak-Novakovic G. Tissue-engineered model of human osteolytic bone tumor. Tissue Eng Part C Methods. 2017;23:98–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by NIH grants R01 CA193442, R01 CA173481, R01 CA183929 and P01 CA265768 to CAS, and UH3 EB025765, P41 EB027062 and R01 CA249799 to GVN. JMA was supported by a postdoctoral training grant from the Department of Defense (DOD) Prostate Cancer Research Program (W81XWH-15-1-0185), an Irving Institute/Clinical Trials Office Pilot Award funded by the National Center for Advancing Translational Sciences, NIH (UL1TR001873), the Dean’s Precision Medicine Research Fellowship from the Irving Institute for Clinical and Translational Research at CUIMC (UL1TR001873) and a Prostate Cancer Foundation Young Investigator Award (20YOUN25). CAS is supported by the TJ Martell Foundation for Leukemia, Cancer and AIDS Research and The Prostate Cancer Foundation and is an American Cancer Society Research Professor. FP was supported by a DOD Early Investigator Research Award (W81XWH-22-1-0054). This research was funded in part through the National Institutes of Health (NIH)/NCI Cancer Center Support Grant P30CA013696 awarded to the Herbert Irving Comprehensive Cancer Center (HICCC), which supported the Molecular Pathology, Flow Cytometry, Genomics and High Throughput Screening and Oncology Precision Therapeutics and Imaging Cores at HICCC. We are grateful to Jonathan Weissman for kindly providing the genome-wide libraries used in this study. Some figure panels (as indicated) were created with BioRender.com using an institutional license sponsored by Columbia University’s VP&S Office for Research.

Author information

Authors and Affiliations

Authors

Contributions

JMA and CAS conceived and designed the study. JMA collected, assembled and analyzed data. KRB performed and analyzed organ-on-a-chip studies. FP performed and analyzed select mouse studies with assistance from SA. FNA and HC performed select in vitro studies and RNAseq. HC also performed western blot studies. GVN supervised organ-on-a-chip studies and writing of the manuscript. JMA and CAS wrote the manuscript. CAS supervised all studies. All authors approved the manuscript.

Corresponding authors

Correspondence to Juan M. Arriaga or Cory Abate-Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arriaga, J.M., Ronaldson-Bouchard, K., Picech, F. et al. In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene 43, 1303–1315 (2024). https://doi.org/10.1038/s41388-024-02995-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02995-5

Search

Quick links