Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biophotoelectrochemical process co-driven by dead microalgae and live bacteria

Abstract

Anaerobic reduction processes in natural waters can be promoted by dead microalgae that have been attributed to nutrient substances provided by the decomposition of dead microalgae for other microorganisms. However, previous reports have not considered that dead microalgae may also serve as photosensitizers to drive microbial reduction processes. Here we demonstrate a photoelectric synergistic linkage between dead microalgae and bacteria capable of extracellular electron transfer (EET). Illumination of dead Raphidocelis subcapitata resulted in two-fold increase in the rate of anaerobic bioreduction by pure Geobacter sulfurreducens, suggesting that photoelectrons generated from the illuminated dead microalgae were transferred to the EET-capable microorganisms. Similar phenomena were observed in NO3 reduction driven by irradiated dead Chlorella vulgaris and living Shewanella oneidensis, and Cr(VI) reduction driven by irradiated dead Raphidocelis subcapitata and living Bacillus subtilis. Enhancement of bioreduction was also seen when the killed microalgae were illuminated in mixed-culture lake water, suggesting that EET-capable bacteria were naturally present and this phenomenon is common in post-bloom systems. The intracellular ferredoxin-NADP+-reductase is inactivated in the dead microalgae, allowing the production and extracellular transfer of photoelectrons. The use of mutant strains confirmed that the electron transport pathway requires multiheme cytochromes. Taken together, these results suggest a heretofore overlooked biophotoelectrochemical process jointly mediated by illumination of dead microalgae and live EET-capable bacteria in natural ecosystems, which may add an important component in the energetics of bioreduction phenomena particularly in microalgae-enriched environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anaerobic reduction process co-driven by dead Raphidocelis subcapitata and live Geobacter sulfurreducens.
Fig. 2: Photoelectric mechanisms in the dead Raphidocelis subcapitata–live Geobacter sulfurreducens experiment.
Fig. 3: Anaerobic reduction process co-driven by dead microalgae and live mixed-bacteria in lake water.
Fig. 4: Evidences for a biophotoelectrochemical process in a mixed-bacteria environment.
Fig. 5: Proposed photoelectric mechanism of the anaerobic reduction process co-driven by dead microalgae and live bacteria.

Similar content being viewed by others

Data availability

The DNA sequence raw data have been deposited in the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) with the accession numbers SRR23217474-SRR23217485 under the BioProject PRJNA925680. All other data are available at Zenodo (https://doi.org/10.5281/zenodo.7553088).

References

  1. Maúre ER, Terauchi G, Ishizaka J, Clinton N, DeWitt M. Globally consistent assessment of coastal eutrophication. Nat Commun. 2021;12:6142.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paerl H, Gardner W, McCarthy M, Peierls B, Wilhelm S. Algal blooms: noteworthy nitrogen. Science. 2014;346:175.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu L, Shi W, Van Dam B, Kong L, Yu J, Qin B. Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes. Environ Sci Technol. 2020;54:6194–201.

    Article  CAS  PubMed  Google Scholar 

  4. Wang P, Laws E, Wang Y, Chen J, Song X, Huang R, et al. Elevated pCO2 changes community structure and function by affecting phytoplankton group-specific mortality. Mar Pollut Bull. 2022;175:113362.

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Holbach A, Wilhelms A, Krieg J, Qin Y, Zheng B, et al. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environ Pollut. 2020;264:114802.

    Article  CAS  PubMed  Google Scholar 

  6. Liang X, Zhang X, Sun Q, He C, Chen X, Liu X, et al. The role of filamentous algae Spirogyra spp. in methane production and emissions in streams. Aquat Sci. 2016;78:227–39.

    Article  CAS  Google Scholar 

  7. Shen Y, Huang Y, Hu J, Li P, Zhang C, Li L, et al. The nitrogen reduction in eutrophic water column driven by Microcystis blooms. J Hazard Mater. 2020;385:121578.

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Huang Y, Chen G, Li P, Shen Y, Davis TW. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere. 2018;196:280–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lu A, Li Y, Jin S, Wang X, Wu X, Zeng C, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun. 2012;3:768.

    Article  PubMed  Google Scholar 

  10. Li Y, Li Y, Liu Y, Wu Y, Wu J, Wang B, et al. Photoreduction of inorganic carbon (+V) by elecmental sulfur: implications for prebiotic synthesis in terrestrial hot springs. Sci Adv. 2020;6:eabc3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Chen M, Dian Y, Feng Q, Zeng RJ, Zhou S. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrophic denitrification. Environ Sci Technol. 2022;56:4632–41.

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Cai Q, Chen X, Huang S, Feng Q, Majima T, et al. Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity. Environ Sci Technol. 2022;56:5161–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351:74–77.

    Article  CAS  PubMed  Google Scholar 

  14. Ye J, Yu J, Zhang Y, Chen M, Liu X, Zhou S, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Appl Catal B Environ. 2019;257:117916.

    Article  CAS  Google Scholar 

  15. Chen M, Zhou X, Yu Y, Liu X, Zeng RJ, Zhou S, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environ Int. 2019;127:353–60.

    Article  CAS  PubMed  Google Scholar 

  16. Cestellos-Blanco S, Zhang H, Kim JM, Shen Y, Yang P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat Catal. 2020;3:245–55.

    Article  CAS  Google Scholar 

  17. Huang L, Liu X, Zhang Z, Ye J, Rensing C, Zhou S, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. ISME J. 2022;16:370–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ding R, Yan W, Wu Y, Xiao Y, Gang H, Wang S, et al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Res. 2018;143:589–98.

    Article  CAS  PubMed  Google Scholar 

  19. Ren G, Yan Y, Nie Y, Lu A, Wu X, Li Y, et al. Natural extracellular electron transfer between semiconducting minerals and electroactive bacteria communities occurred on the rock varnish. Front Microbiol. 2019;10:293.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem. 2014;49:1723–32.

    Article  CAS  Google Scholar 

  21. Luo L, Xiao Z, Chen B, Cai F, Fang L, Lin L, et al. Natural porphyrins accelerating the phototransformation of Benzo[a]pyrene in water. Environ Sci Technol. 2019;52:3634–41.

    Article  Google Scholar 

  22. Chen S, Deng C, Liu X, Yang Y, Cai X, Huang H, et al. CdS nanoparticles alleviate photo-induced stress in Geobacter co-cultures. Environ Sci Nano. 2019;6:1941–9.

    Article  CAS  Google Scholar 

  23. Liu X, Zhuo S, Rensing C, Zhou S. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME J. 2018;12:2142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang S, Tang J, Liu X, Dong G, Zhou S. Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid. ACS sustain. Chem Eng. 2019;7:15427–33.

    CAS  Google Scholar 

  25. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47:4294–302.

    Article  CAS  PubMed  Google Scholar 

  26. Machado MD, Soares EV. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Appl Microbiol Biotechnol. 2012;95:1035–42.

    Article  CAS  PubMed  Google Scholar 

  27. Ye Y, Liu X, Nealson KH, Rensing C, Qin S, Zhou S. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. mBio. 2022;13:e03822–21.

    Article  CAS  PubMed Central  Google Scholar 

  28. Coppi MV, Leang C, Sandler SJ, Lovley DR. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol. 2001;67:3180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Backer LC, McNeel SV, Barber R, Kirkpatrick B, Williams C, Irvin M, et al. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon. 2010;55:909–21.

    Article  CAS  PubMed  Google Scholar 

  30. Oudra B, Loudiki M, Sbiyyaa B, Martins R, Vasconcelos V, Namikoshi N. Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir (Morocco). Toxicon. 2001;39:1375–81.

    Article  CAS  PubMed  Google Scholar 

  31. Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methe BA, et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE. 2009;4:e5628.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fang Y, Xu M, Wu W, Chen X, Sun G, Guo J, et al. Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiol. 2015;15:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen N, Huo Y, Chen J, Zhang F, Zheng H, Zeng RJ. Decolorization by Caldicellulosiruptor saccharolyticus with dissolved hydrogen under extreme thermophilic conditions. Chem Eng J 2015;262:847–53.

    Article  CAS  Google Scholar 

  34. Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol. 2015;17:648–55.

    Article  CAS  PubMed  Google Scholar 

  35. Leang C, Coppi MV, Lovley DR. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol. 2003;185:2096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S, Yang Y, Jing X, Zhang L, Chen J, Rensing C, et al. Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions. Water Res. 2021;207:117782.

    Article  CAS  PubMed  Google Scholar 

  37. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:103.

    Article  Google Scholar 

  39. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996.

    Article  CAS  PubMed  Google Scholar 

  40. Mishra A, Kumar S, Pandey AK. Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. Int Biodeter Biodegr. 2011;65:487–93.

    Article  CAS  Google Scholar 

  41. Cai P, Xiao X, He Y, Li W, Chu J, Wu C, et al. Anaerobic biodecolorization mechanism of methyl orange by Shewamella oneidensis MR-1. Appl Microbiol Biot. 2012;93:1769–76.

    Article  CAS  Google Scholar 

  42. Liu Y, Zhang F, Li J, Li D, Liu D, Li W, et al. Exclusive extracellular bioreduction of methyl orange by azo reductase-free Geobacter sulfurreducens. Environ Sci Technol. 2017;51:8616–23.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Huang L, Quan X, Puma GL. Sequential anaerobic and electro-Fenton processes mediated by W aLnd Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells. Appl Catal B-Environ. 2019;245:672–80.

    Article  CAS  Google Scholar 

  44. Zhao H, Huang S, Xu W, Wang Y, Wang Y, He C, et al. Undiscovered mechanism for pyrogenic carbonaceous matter-mediated abiotic transformation of azo dyes by sulfide. Environ Sci Technol. 2019;53:4397–405.

    Article  CAS  PubMed  Google Scholar 

  45. Huang S, Tang J, Liu X, Dong G, Zhou S. Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid. ACS Sustain Chem Eng. 2019;7:15427–33.

    Article  CAS  Google Scholar 

  46. Esteve-Nunez A, Sosnik J, Visconti P, Lovley DR. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ Microbiol. 2008;10:497–505.

    Article  CAS  PubMed  Google Scholar 

  47. Malvankar SN, Mester T, Tuominen TM, Lovley RD. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Chemphyschem. 2012;13:463–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Micro Physiol. 2011;59:1–100.

    Article  CAS  Google Scholar 

  49. Bonanni PS, Schrott GD, Robuschi L, Busalmen JP. Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms. Energy Environ Sci. 2012;5:6188–95.

    Article  CAS  Google Scholar 

  50. Segovia M, Berges JA. Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta. J Phycol. 2009;45:1116–26.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu Y, Zhong X, Wang Y, Zhao Q, Huang H. Growth performance and antioxidative response of Chlorella pyrenoidesa, Dunaliella salina, and Anabaena cylindrica to four kinds of ionic liquids. Appl Biochem Biotechnol 2021;193:1945–66.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Shu X, Zhang Y, Tan X, Zhang Q. The responses of epilithic algal community structure and function to light and nutrients and their linkages in subtropical rivers. Hydrobiologia. 2020;847:841–55.

    Article  CAS  Google Scholar 

  53. Murakami T, Terai H, Yoshiyama Y, Tezuka T, Zhu L, Matsunaka T, et al. The second investigation of Lake Puma Yum Co located in the southern Tibetan Plateau, China. Limnology. 2007;8:331–5.

    Article  CAS  Google Scholar 

  54. Gao J, Zhu J, Wang M, Dong W. Dominance and growth factors of Pseudanabaena sp. in drinking water source reservoirs, southern China. Sustainability. 2018;10:1–15.

    Article  Google Scholar 

  55. Ferreira A, Stramski D, Garcia CAE, Garcia VMT, Ciotti AM, Mendes CRB. Variability in light absorption and scattering of phytoplankton in Patagonian waters: role of community size structure and pigment composition. J Geophys Res Oceans. 2013;118:698–714.

    Article  Google Scholar 

  56. Quaranta A, Krieger-Liszkay A, Pascal AA, Perreau F, Robert B, Vengris M, et al. Singlet fission in naturally-organized carotenoid molecules. Phys Chem Chem Phys. 2021;23:4768–76.

    Article  CAS  PubMed  Google Scholar 

  57. Luo L, Lai X, Chen B, Lin L, Fang L, Tam NFY, et al. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water. Sci Rep. 2015;5:12776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mineeva NM. Content of photosynthetic pigments in the upper volga reservoirs (2005-2016). Inland Water Biol. 2019;12:161–9.

    Article  Google Scholar 

  59. Mathanmohun M, Ramasamy S, Krishnamoorthy S, Palve AM, Palanisamy A. Screening, molecular detection and hydrocarbon investigation of microalgae from paddy fields of Rasipuram area, Namakkal, Tamil Nadu. Mater Today Proc. 2021;47:440–5.

    Article  CAS  Google Scholar 

  60. Rumpel S, Siebel JF, Fares C, Duan JF, Reijerse E, Happe T, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energ Environ Sci. 2014;7:3296–301.

    Article  CAS  Google Scholar 

  61. Lendzian K, Bassham JA. NADPH/NADP+ ratios in photosynthesizing reconstituted chloroplasts. Biochim Biophys Acta. 1976;430:478–89.

    Article  CAS  PubMed  Google Scholar 

  62. Caccavo FJ, Lonergan DJ, Lovley DR, Davis M, Stolz JF, Mclnerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilarity metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci. 2009;2:506–16.

    Article  CAS  Google Scholar 

  64. Liu X, Zhan J, Jing X, Zhou S, Lovley DR. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili. Environ Microbiol. 2019;21:2511–22.

    Article  CAS  PubMed  Google Scholar 

  65. Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 2018;12:48–58.

    Article  CAS  PubMed  Google Scholar 

  66. Pan Y, Zheng X, Xiang Y. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing. Bioresour Technol. 2021;340:125709.

    Article  CAS  PubMed  Google Scholar 

  67. Pankratov TA, Ivanova AO, Dedysh SN, Liesack W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol. 2011;13:1800–14.

    Article  CAS  PubMed  Google Scholar 

  68. Cui J, Mai G, Wang Z, Liu Q, Zhou Y, Ma Y, et al. Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol. 2019;10:618.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chun J, Kang JY, Jung YC, Jahng KY. Niveibacterium umoris gen. nov., sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol. 2016;66:997–1002.

    Article  CAS  PubMed  Google Scholar 

  70. Koch C, Harnisch F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 2016;3:1282–95.

    Article  CAS  Google Scholar 

  71. Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17:307–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (92251301 and 42277101), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08L213).

Author information

Authors and Affiliations

Authors

Contributions

SC designed the experiments, conducted analyses and wrote the first draft of the manuscript. JC, LZ, and YY performed the experiments, collected the data and drew figures. SH and XL interpreted the data. TL and SZ supervised the experiments. SZ, KHN and CR revised the manuscript. All authors read, revised and approved the final manuscript.

Corresponding author

Correspondence to Shungui Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, J., Zhang, L. et al. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. ISME J 17, 712–719 (2023). https://doi.org/10.1038/s41396-023-01383-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01383-3

Search

Quick links