Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling

Abstract

A major cause of oxaliplatin chemoresistance in colorectal cancer (CRC) is acquired epithelial-mesenchymal transition (EMT) in cancer cells, making the cancer cells easy to metastasis and recurrence. LncRNA Neighboring Enhancer of FOXA2 (lncRNA-NEF) has been characterized as a tumor suppressor to mediate cancer metastasis in multiple cancer types. However, whether it mediated the drug resistance remains unknown. In the present study, an oxaliplatin-resistant CRC cell line (SW620R) was established and lncRNA-NEF was obviously down-regulated in this resistant cell line. The further loss and gain-of-function studies demonstrated that this lncRNA suppressed oxaliplatin resistance as well as EMT programme in vitro and inhibited metastasis in vivo. Mechanistically, lncRNA-NEF epigenetically promoted the expression of DOK1 (Downstream of Tyrosine kinase 1), a negative regulator of MEK/ERK signaling, by disrupting DNA methyltransferases (DNMTs)-mediated DNA methylation. DOK1, in turn, induced the inactivation of MEK/ERK signaling, forming the lncRNA-NEF/DOK1/MEK/ERK regulatory axis to mediate oxaliplatin resistance in CRC. Collectively, our work reveals the critical function of lncRNA-NEF in mediating the oxaliplatin chemotherapy resistance in CRC, and provides a promising therapeutic strategy for CRC patients with oxaliplatin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acquisition of oxaliplatin resistance induced EMT in CRC cells.
Fig. 2: LncRNA-NEF inhibited the oxaliplatin resistance and EMT in CRC cells.
Fig. 3: LncRNA-NEF knockdown promoted EMT transition as well as metastasis in CRC cells.
Fig. 4: LncRNA-NEF inhibited the metastasis of oxaliplatin-resistant CRC cells in vivo.
Fig. 5: LncRNA-NEF suppressed the activation of MEK/ERK signaling pathway through enhancing DOK1 expression.
Fig. 6: LncRNA-NEF suppressed the methylation of the DOK1 promoter in oxaliplatin-resistant SW620R cells.
Fig. 7: Overexpression of DOK1 rescued the promoted effects of sh-lncRNA-NEF on oxaliplatin resistance and metastasis in vitro and in vivo.
Fig. 8: The schematic overview of lncRNA-NEF inhibited the oxaliplatin resistance in CRC cells.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Keum N, Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16:713–32.

    Article  PubMed  Google Scholar 

  2. Abraham J, Magee D, Cremolini C, Antoniotti C, Halbert D, Xiu J, et al. Clinical validation of a machine-learning-derived signature predictive of outcomes from first-line oxaliplatin-based chemotherapy in advanced colorectal cancer. Clin Cancer Res. 2021;27:1174–83.

    Article  CAS  PubMed  Google Scholar 

  3. Schmoll HJ, Twelves C, Sun W, O’Connell MJ, Cartwright T, McKenna E, et al. Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III colon cancer and the effect of oxaliplatin on post-relapse survival: a pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol. 2014;15:1481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic colorectal cancer - Beyond first and second line combination therapies. Cancer Treat Rev. 2017;59:54–60.

    Article  CAS  PubMed  Google Scholar 

  5. Souglakos J, Kalykaki A, Vamvakas L, Androulakis N, Kalbakis K, Agelaki S, et al. Phase II trial of capecitabine and oxaliplatin (CAPOX) plus cetuximab in patients with metastatic colorectal cancer who progressed after oxaliplatin-based chemotherapy. Ann Oncol: Off J Eur Soc Med Oncol. 2007;18:305–10.

    Article  CAS  Google Scholar 

  6. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  7. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat Rev Drug Discov. 2013;12:217–28.

    Article  CAS  PubMed  Google Scholar 

  8. Escalante PI, Quiñones LA, Contreras HR. Epithelial-mesenchymal transition and MicroRNAs in colorectal cancer chemoresistance to FOLFOX. Pharmaceutics 2021;13:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Deng G, Fu Y, Han Y, Guo C, Yin L, et al. FOXC2 promotes oxaliplatin resistance by inducing epithelial-mesenchymal transition via MAPK/ERK signaling in colorectal cancer. OncoTargets Ther. 2020;13:1625–35.

    Article  CAS  Google Scholar 

  10. Chen S, Shen X. Long noncoding RNAs: Functions and mechanisms in colon cancer. Mol cancer. 2020;19:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell death Dis. 2021;12:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu H, Li D, Sun L, Qin H, Fan A, Meng L, et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol cancer. 2022;21:74.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liang WC, Ren JL, Wong CW, Chan SO, Waye MM, Fu WM, et al. LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via cis-regulating FOXA2 and inactivating Wnt/β-catenin signaling. Oncogene 2018;37:1445–56.

    Article  CAS  PubMed  Google Scholar 

  14. Wan X, Xiang J, Zhang Q, Bian C. Downregulation of lnRNA-NEF is involved in the postoperative cancer distant recurrence in prostate carcinoma patients. J Cell Biochem. 2019;120:9601–7.

    Article  CAS  PubMed  Google Scholar 

  15. Liang Z, Zhu B, Meng D, Shen X, Li X, Wang Z, et al. Down-regulation of lncRNA-NEF indicates poor prognosis in intrahepatic cholangiocarcinoma. Biosci Rep. 2019;39:BSR20181573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Q, Yu H, Yin Q, Hu X, Zhang C. lncRNA-NEF is downregulated in osteosarcoma and inhibits cancer cell migration and invasion by downregulating miRNA-21. Oncol Lett. 2019;17:5403–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ju W, Luo X, Zhang N. LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep. 2019;39:BSR20180878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song X, Liu Z, Yu Z. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta biochimica et biophysica Sin. 2019;51:386–92.

    Article  CAS  Google Scholar 

  19. Wu L, Wang P. Long non-coding RNA-neighboring enhancer of FOXA2 inhibits the migration and invasion of small cell lung carcinoma cells by downregulating transforming growth factor-β1. Oncol Lett. 2019;17:4969–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cui X, Fang N, Cui Y, Xiao D, Wang X. Long non-coding RNA NEF inhibits proliferation and promotes apoptosis of laryngeal squamous cell carcinoma cells by inhibiting Wnt/β-catenin signaling. Oncol Lett. 2019;17:4928–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng L, Shi L, Lu YF, Wang B, Tang T, Fu WM, et al. Linc-ROR promotes osteogenic differentiation of mesenchymal stem cells by functioning as a competing endogenous RNA for miR-138 and miR-145. Molecular therapy. Nucleic acids. 2018;11:345–53.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shi CJ, Zheng YB, Pan FF, Zhang FW, Zhuang P, Fu WM. Gallic acid suppressed tumorigenesis by an LncRNA MALAT1-Wnt/β-Catenin axis in hepatocellular carcinoma. Front Pharmacol. 2021;12:708967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 2015;5:752–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8:318.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin cancer Biol. 2021;75:38–48.

    Article  CAS  PubMed  Google Scholar 

  27. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9:97.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 2014;13:928–42.

    Article  CAS  PubMed  Google Scholar 

  29. Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol. 2020;17:111–30.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Yang Z, Zhang H, Li H, Zhang M, Wang H, et al. DNMT3A facilitates colorectal cancer progression via regulating DAB2IP mediated MEK/ERK activation. Biochimica et biophysica acta Mol basis Dis. 2022;1868:166353.

    Article  CAS  Google Scholar 

  31. Zhang K, Zhai Z, Yu S, Tao Y. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer. 2021;12:5473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging 2021;13:4962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei CH, Wu G, Cai Q, Gao XC, Tong F, Zhou R, et al. MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol. 2017;10:125.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clark SJ, Molloy PL. Early insights into cancer epigenetics: Gene promoter hypermethylation emerges as a potential biomarker for cancer detection. Cancer Res. 2022;82:1461–3.

    Article  CAS  PubMed  Google Scholar 

  35. Erin N, Grahovac J, Brozovic A, Efferth T. antimicrobial ci, chemotherapy a. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 2020;53:100715.

    Article  PubMed  Google Scholar 

  36. Boumahdi S, de Sauvage FJ. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19:39–56.

    Article  CAS  PubMed  Google Scholar 

  37. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  38. Williams E, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19:716–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma J, Zeng S, Zhang Y, Deng G, Qu Y, Guo C, et al. BMP4 promotes oxaliplatin resistance by an induction of epithelial-mesenchymal transition via MEK1/ERK/ELK1 signaling in hepatocellular carcinoma. Cancer Lett. 2017;411:117–29.

    Article  CAS  PubMed  Google Scholar 

  40. Ren H, Wang Z, Chen Y, Liu Y, Zhang S, Zhang T, et al. SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway. OncoTargets Ther. 2019;12:2585–94.

    Article  CAS  Google Scholar 

  41. Liu W, Zhang Z, Zhang Y, Chen X, Guo S, Lei Y, et al. HMGB1-mediated autophagy modulates sensitivity of colorectal cancer cells to oxaliplatin via MEK/ERK signaling pathway. Cancer Biol Ther. 2015;16:511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, et al. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation 2016;134:1848–62.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, et al. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine 2018;36:159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamanashi Y, Tamura T, Kanamori T, Yamane H, Nariuchi H, Yamamoto T, et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev. 2000;14:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, Viale A, et al. Identification of DOK genes as lung tumor suppressors. Nat Genet. 2010;42:216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saulnier A, Vaissière T, Yue J, Siouda M, Malfroy M, Accardi R, et al. Inactivation of the putative suppressor gene DOK1 by promoter hypermethylation in primary human cancers. Int J cancer. 2012;130:2484–94.

    Article  CAS  PubMed  Google Scholar 

  47. He PF, Xu ZJ, Zhou JD, Li XX, Zhang W, Wu DH, et al. Methylation-associated DOK1 and DOK2 down-regulation: Potential biomarkers for predicting adverse prognosis in acute myeloid leukemia. J Cell Physiol. 2018;233:6604–14.

    Article  CAS  PubMed  Google Scholar 

  48. Gutting T, Merkel A, Fink DJ, Hetjens S, Weidner P, Yu Y, et al. Expression of the EGFR-RAS Inhibitory Proteins DOK1 and MTMR7 and its Significance in Colorectal Adenoma and Adenoma Recurrence. J Gastrointest liver Dis: JGLD. 2021;30:446–55.

    Article  Google Scholar 

  49. Friedrich T, Söhn M, Gutting T, Janssen KP, Behrens HM, Röcken C, et al. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer. EBioMedicine 2016;8:159–72.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81773066, 81772404) and Natural Science Foundation of Guangdong Province (2020A1515010961; 2021A1515012111).

Author information

Authors and Affiliations

Authors

Contributions

JFZ and WMF conceptualized and designed all the experiments. CJS, ZHX, WQZ, LQD, FXP, and FWZ performed the experiments and analyzed the data. CJS, JFZ, and WMF prepared the manuscript.

Corresponding authors

Correspondence to Wei-Ming Fu or Jin-Fang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The usage and treatment of animals were approved by Institutional Animal Care and Use Committee (IACUC) of SMU (Guangzhou, China, Approval No. L2019140).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, CJ., Xue, ZH., Zeng, WQ. et al. LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling. Cancer Gene Ther 30, 855–865 (2023). https://doi.org/10.1038/s41417-023-00595-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00595-1

This article is cited by

Search

Quick links