Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Development of design strategies for conjugated polymer binders in lithium-ion batteries

Abstract

Lithium-ion batteries (LIBs) are complex electrochemical systems whose performance is determined by the proper design and optimization of its individual components, such as active materials, separators, polymer binders, electrolytes and conductive additives. In the quest for high-energy and high-power density batteries and next-generation ultrahigh-capacity battery electrodes, industry and academia have worked hand-in-hand over the last few decades, developing strategies for improving the performance of each component in an LIB. However, only recently has the development of multifunctional polymer binders become a focus, with the goal of providing additional functionality beyond simple mechanical adhesion. Polymer binders, exemplified by poly(vinylidene fluoride) (PVDF), are typically an inactive component in a composite electrode that does not contribute to capacity. Moreover, limited binding strength, poor mechanical properties and the absence of electronic and ionic conductivity make PVDF inadequate for application in emerging high-capacity and high-power density batteries. In this regard, conjugated polymers have gained attention as conductive polymer binders and/or coatings for the cathodes and anodes in LIBs. The ability of conjugated polymers to transport both electronic and ionic charge carriers endows them with mixed electron and Li+ ion transporting properties in an LIB. Based on the enormous potential of conjugated polymer binders to enhance the performance of LIBs, in this review, we present an overview of conducting polymer binders/coatings and their chemical design strategies, developed in the last decade, for use in LIBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature. 2009;458:1158–62.

    Article  CAS  PubMed  Google Scholar 

  2. Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energy. 2015;76:375–80.

    Article  Google Scholar 

  3. Goodenough JB. Electrochemical energy storage in a sustainable modern society. Energy Env Sci. 2014;7:14–18.

    Article  CAS  Google Scholar 

  4. Alvarez GE. Operation of pumped storage hydropower plants through optimization for power systems. Energy. 2020;202:117797.

    Article  Google Scholar 

  5. Chen M, Zhang Y, Xing G, Chou S-L, Tang Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ Sci. 2021;14:3323–51.

    Article  CAS  Google Scholar 

  6. Wang K, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, et al. Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature. 2014;514:348–50.

    Article  CAS  PubMed  Google Scholar 

  7. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, et al. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3:279–89.

    Article  Google Scholar 

  8. Tran M-K, Panchal S, Khang TD, Panchal K, Fraser R, Fowler M. Concept review of a cloud-based smart battery management system for lithium-ion batteries: feasibility, logistics, and functionality. Batteries. 2022;8:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev 2021;121:1623–69.

    Article  CAS  PubMed  Google Scholar 

  10. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, et al. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575:75–86.

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4:127–42.

    Article  CAS  Google Scholar 

  12. Van Noorden R. The rechargeable revolution: a better battery. Nature. 2014;507:26–28.

    Article  PubMed  Google Scholar 

  13. Kim T, Song W, Son D-Y, Ono LK, Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A. 2019;7:2942–64.

    Article  CAS  Google Scholar 

  14. Fang H. Challenges with the ultimate energy density with Li-ion batteries. IOP Conf Ser Earth Environ Sci. 2021;781:042023.

    Article  Google Scholar 

  15. Gao H, Wu Q, Hu Y, Zheng JP, Amine K, Chen Z. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J Phys Chem Lett. 2018;9:5100–4.

    Article  CAS  PubMed  Google Scholar 

  16. Masias A, Marcicki J, Paxton WA. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021;6:621–30.

    Article  CAS  Google Scholar 

  17. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49:1569–614.

    Article  CAS  PubMed  Google Scholar 

  18. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114:11751–87.

    Article  CAS  PubMed  Google Scholar 

  19. Fang R, Zhao S, Sun Z, Wang D-W, Cheng H-M, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29:1606823.

    Article  Google Scholar 

  20. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–418.

    Article  CAS  PubMed  Google Scholar 

  21. Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev. 2019;2:1–28.

    Article  CAS  Google Scholar 

  22. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114:11503–618.

    Article  CAS  PubMed  Google Scholar 

  23. Arora P, Zhang Z. (John). Battery separators. Chem Rev. 2004;104:4419–62.

    Article  CAS  PubMed  Google Scholar 

  24. Shen X, Zhang X-Q, Ding F, Huang J-Q, Xu R, Chen X, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv. 2021;2021:1–15.

    Article  Google Scholar 

  25. Boz B, Dev T, Salvadori A, Schaefer JL. Review—electrolyte and electrode designs for enhanced ion transport properties to enable high performance lithium batteries. J Electrochem Soc. 2021;168:090501.

    Article  CAS  Google Scholar 

  26. Di Lecce D, Verrelli R, Hassoun J. Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chem. 2017;19:3442–67.

    Article  Google Scholar 

  27. Marshall JE, Zhenova A, Roberts S, Petchey T, Zhu P, Dancer CEJ, et al. On the solubility and stability of polyvinylidene fluoride. Polymers. 2021;13:1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhong X, Han J, Chen L, Liu W, Jiao F, Zhu H, et al. Binding mechanisms of PVDF in lithium ion batteries. Appl Surf Sci 2021;553:149564.

    Article  CAS  Google Scholar 

  29. Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118:8936–82.

    Article  CAS  PubMed  Google Scholar 

  30. Cho KY, Kwon YI, Youn JR, Song YS. Interaction analysis between binder and particles in multiphase slurries. Analyst. 2013;138:2044.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Christensen L, Dahn JR. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J Electrochem Soc. 2003;150:A1073.

    Article  CAS  Google Scholar 

  32. Markevich E, Salitra G, Aurbach D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun. 2005;7:1298–304.

    Article  CAS  Google Scholar 

  33. Roth EP, Doughty DH, Franklin J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J Power Sources. 2004;134:222–34. https://reader.elsevier.com/reader/sd/pii/S0378775304004707?token=F0BFD6EA734B747D3E2E2177BAE84D8FAE605BFB7774A7C263B62FF7B523F9B34FB7DCB6F6EF57909DC43F8A0751F93E&originRegion=us-east-1&originCreation=20220627170243.

    Article  CAS  Google Scholar 

  34. Maleki H, Deng G, Kerzhner‐Haller I, Anani A, Howard JN. Thermal stability studies of binder materials in anodes for lithium‐ion batteries. J Electrochem Soc. 2000;147:4470.

    Article  CAS  Google Scholar 

  35. Pasquier AD, Disma F, Bowmer T, Gozdz AS, Amatucci G, Tarascon J-M. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li‐ion batteries. J Electrochem Soc 1998;145:472.

    Article  Google Scholar 

  36. Zou F, Manthiram A. A review of the design of advanced binders for high-performance batteries. Adv Energy Mater. 2020;10:2002508.

    Article  CAS  Google Scholar 

  37. Shi Y, Zhou X, Yu G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc Chem Res. 2017;50:2642–52.

    Article  CAS  PubMed  Google Scholar 

  38. Nirmale TC, Kale BB, Varma AJ. A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery. Int J Biol Macromol. 2017;103:1032–43.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Han S, Xu C, Luo Y, Peng N, Qin C, et al. In situ crosslinked PVA–PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv. 2016;6:68371–8.

    Article  CAS  Google Scholar 

  40. Yuan H, Huang J-Q, Peng H-J, Titirici M-M, Xiang R, Chen R, et al. A review of functional binders in lithium-sulfur batteries. Adv Energy Mater. 2018;8:1802107.

    Article  Google Scholar 

  41. Hwang C, Lee J, Jeong J, Lee E, Kim J, Kim S, et al. The rational design of a redox-active mixed ion/electron conductor as a multi-functional binder for lithium-ion batteries. J Mater Chem A. 2021;9:4751–7.

    Article  CAS  Google Scholar 

  42. Nguyen VA, Kuss C. Review—conducting polymer-based binders for lithium-ion batteries and beyond. J Electrochem Soc. 2020;167:065501.

    Article  CAS  Google Scholar 

  43. Frischmann PD, Hwa Y, Cairns EJ, Helms BA. Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando. Chem Mater. 2016;28:7414–21.

    Article  CAS  Google Scholar 

  44. Chen H, Wu Z, Su Z, Chen S, Yan C, Al-Mamun M, et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy. 2021;81:105654.

    Article  CAS  Google Scholar 

  45. Jin B, Li Y, Qian J, Zhan X, Zhang Q. Environmentally friendly binders for lithium-sulfur batteries. ChemElectroChem. 2020;7:4158–76.

    Article  CAS  Google Scholar 

  46. Das P, Zayat B, Wei Q, Salamat CZ, Magdău I-B, Elizalde-Segovia R, et al. Dihexyl-substituted poly(3,4-propylenedioxythiophene) as a dual ionic and electronic conductive cathode binder for lithium-ion batteries. Chem Mater. 2020;32:9176–89.

    Article  CAS  Google Scholar 

  47. Das P, Elizalde-Segovia R, Zayat B, Salamat CZ, Pace G, Zhai K, et al. Enhancing the ionic conductivity of poly(3,4-propylenedioxythiophenes) with oligoether side chains for use as conductive cathode binders in lithium-ion batteries. Chem Mater. 2022;34:2672–86.

    Article  CAS  Google Scholar 

  48. Minnici K, Kwon YH, Housel LM, Renderos GD, Ponder JF, Buckley C, et al. Tuning conjugated polymers for binder applications in high-capacity magnetite anodes. ACS Appl Energy Mater. 2019;2:7584–93.

    Article  CAS  Google Scholar 

  49. Kwon YH, Minnici K, Park JJ, Lee SR, Zhang G, Takeuchi ES, et al. SWNT anchored with carboxylated polythiophene “links” on high-capacity Li-ion battery anode materials. J Am Chem Soc. 2018;140:5666–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kwon YH, Minnici K, Lee SR, Zhang G, Takeuchi ES, Takeuchi KJ, et al. SWNT networks with polythiophene carboxylate links for high-performance silicon monoxide electrodes. ACS Appl Energy Mater. 2018;1:2417–23.

    Article  CAS  Google Scholar 

  51. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292–308.

    Article  Google Scholar 

  52. Yue Y, Liang H. 3D current collectors for lithium-ion batteries: a topical review. Small Methods. 2018;2:1800056.

    Article  Google Scholar 

  53. Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. J Power Sources. 2021;485:229321.

    Article  CAS  Google Scholar 

  54. Preefer MB, Saber M, Wei Q, Bashian NH, Bocarsly JD, Zhang W, et al. Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, Wadsley-Roth phase PNb9O25. Chem Mater. 2020;32:4553–63.

    Article  CAS  Google Scholar 

  55. Martinolich AJ, Zak JJ, Agyeman-Budu DN, Kim SS, Bashian NH, Irshad A, et al. Controlling covalency and anion redox potentials through anion substitution in Li-rich chalcogenides. Chem Mater. 2021;33:378–91.

    Article  CAS  Google Scholar 

  56. Wyckoff KE, Robertson DD, Preefer MB, Teicher SML, Bienz J, Kautzsch L, et al. High-capacity Li + storage through multielectron redox in the fast-charging Wadsley–Roth phase (W0.2 V0.8)3 O7. Chem Mater. 2020;32:9415–24.

    Article  CAS  Google Scholar 

  57. Gong L, Xiang L, Zhang J, Chen J, Zeng H. Fundamentals and advances in the adhesion of polymer surfaces and thin films. Langmuir. 2019;35:15914–36.

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Wang L, Qiao Y, Sun X, Ma S, Cheng X, et al. Adhesion of liquid food to packaging surfaces: mechanisms, test methods, influencing factors and anti-adhesion methods. J Food Eng. 2018;228:102–17.

    Article  CAS  Google Scholar 

  59. Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev. 2019;48:5016–32.

    Article  CAS  PubMed  Google Scholar 

  60. Derjaguin BV, Aleinikova IN, Toporov YP. On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technol. 1969;2:154–8.

    Article  Google Scholar 

  61. Shi Q, Wong S-C, Ye W, Hou J, Zhao J, Yin J. Mechanism of adhesion between polymer fibers at nanoscale contacts. Langmuir. 2012;28:4663–71.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang C, Hankett J, Chen Z. Molecular level understanding of adhesion mechanisms at the epoxy/polymer interfaces. ACS Appl Mater Interfaces. 2012;4:3730–7.

    Article  CAS  PubMed  Google Scholar 

  63. Shenton MJ, Lovell-Hoare MC, Stevens GC. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. J Phys Appl Phys. 2001;34:2754–60.

    Article  CAS  Google Scholar 

  64. Yan X, Zhang Y, Zhu K, Gao Y, Zhang D, Chen G, et al. Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. J Power Sources. 2014;246:95–102.

    Article  CAS  Google Scholar 

  65. Le AV, Wang M, Noelle DJ, Shi Y, Shirley Meng Y, Wu D, et al. Using high‐HFP‐content cathode binder for mitigation of heat generation of lithium‐ion battery. Int J Energy Res. 2017;41:2430–8.

    Article  CAS  Google Scholar 

  66. Zhang B, Liu D, Xie H, Wang D, Hu C, Dai L. In-situ construction of chemically bonded conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries. J Power Sources. 2022;539:231591.

    Article  CAS  Google Scholar 

  67. Zhao H, Wang Z, Lu P, Jiang M, Shi F, Song X, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2014;14:6704–10.

    Article  CAS  PubMed  Google Scholar 

  68. Wu M, Song X, Liu X, Battaglia V, Yang W, Liu G. Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. J Mater Chem A. 2015;3:3651–8.

    Article  CAS  Google Scholar 

  69. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG. Ionic conductivity in crystalline polymer electrolytes. Nature. 2001;412:520–3.

    Article  CAS  PubMed  Google Scholar 

  70. Muthukumar M. Theory of ionic conductivity with morphological control in polymers. ACS Macro Lett. 2021;10:958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patel SN, Javier AE, Stone GM, Mullin SA, Balsara NP. Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano. 2012;6:1589–1600.

    Article  CAS  PubMed  Google Scholar 

  72. Javier AE, Patel SN, Hallinan DT Jr., Srinivasan V, Balsara NP. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes. Angew Chem Int Ed. 2011;50:9848–51.

    Article  CAS  Google Scholar 

  73. Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. Organic mixed ionic–electronic conductors. Nat Mater. 2020;19:13–26.

    Article  CAS  PubMed  Google Scholar 

  74. Choi S, Kwon T, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017;357:279–83. https://www.science.org/doi/10.1126/science.aal4373https://doi.org/10.1126/science.aal4373.

  75. Tang R, Ma L, Zhang Y, Zheng X, Shi Y, Zeng X, et al. A flexible and conductive binder with strong adhesion for high performance silicon‐based lithium‐ion battery anode. ChemElectroChem. 2020;7:1992–2000.

    Article  CAS  Google Scholar 

  76. Yuca N, Zhao H, Song X, Dogdu MF, Yuan W, Fu Y, et al. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries. ACS Appl Mater Interfaces. 2014;6:17111–8.

    Article  CAS  PubMed  Google Scholar 

  77. Milroy C, Manthiram A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv Mater 2016;28:9744–51.

    Article  CAS  PubMed  Google Scholar 

  78. Patnaik SG, Vedarajan R, Matsumi N. BIAN based functional diimine polymer binder for high performance Li ion batteries. J Mater Chem A. 2017;5:17909–19.

    Article  CAS  Google Scholar 

  79. Gupta A, Badam R, Nag A, Kaneko T, Matsumi N. Bis-imino-acenaphthenequinone-paraphenylene-type condensation copolymer binder for ultralong cyclable lithium-ion rechargeable batteries. ACS Appl Energy Mater. 2021;4:2231–40.

    Article  CAS  Google Scholar 

  80. Kwon T, Choi JW, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev. 2018;47:2145–64.

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y, Wu S, Zhang Y, Liu C, Wei X, Luo D, et al. Towards efficient binders for silicon based lithium-ion battery anodes. Chem Eng J. 2021;406:126807.

    Article  CAS  Google Scholar 

  82. Zhao Y, Liang Z, Kang Y, Zhou Y, Li Y, He X, et al. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Mater. 2021;35:353–77.

    Article  Google Scholar 

  83. Pillai AM, Salini PS, John B, Devassy MT. Aqueous binders for cathodes: a lodestar for greener lithium ion cells. Energy Fuels. 2022;36:5063–87.

    Article  CAS  Google Scholar 

  84. Lingappan N, Kong L, Pecht M. The significance of aqueous binders in lithium-ion batteries. Renew Sustain Energy Rev. 2021;147:111227.

    Article  CAS  Google Scholar 

  85. Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. Polymer. 2020;207:122874.

    Article  CAS  Google Scholar 

  86. Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent advances in bipolar electrochemistry with conducting polymers. ChemElectroChem. 2022;9:e202101234.

    CAS  Google Scholar 

  87. Kim Y, Park H, Park JS, Lee J-W, Kim FS, Kim HJ, et al. Regioregularity-control of conjugated polymers: from synthesis and properties, to photovoltaic device applications. J Mater Chem A. 2022;10:2672–96.

    Article  CAS  Google Scholar 

  88. Thompson BC, Fréchet JMJ. Polymer–fullerene composite solar cells. Angew Chem Int Ed. 2008;47:58–77.

    Article  CAS  Google Scholar 

  89. Dai L, Winkler B, Dong L, Tong L, Mau AWH. Conjugated polymers for light-emitting applications. Adv Mater. 2001;13:915–25.

    Article  CAS  Google Scholar 

  90. Klauk H. Organic thin-film transistors. Chem Soc Rev. 2010;39:2643.

    Article  CAS  PubMed  Google Scholar 

  91. Harima Y, Kunugi Y, Yamashita K, Shiotani M. Determination of mobilities of charge carriers in electrochemically anion-doped polythiophene film. Chem Phys Lett. 2000;317:310–4.

    Article  CAS  Google Scholar 

  92. Jiang X, Patil R, Harima Y, Ohshita J, Kunai A. Influences of self-assembled structure on mobilities of charge carriers in π-conjugated polymers. J Phys Chem B. 2005;109:221–9.

    Article  CAS  PubMed  Google Scholar 

  93. Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of conducting polymers—persistent models and new concepts. Chem Rev. 2010;110:4724–71.

    Article  CAS  PubMed  Google Scholar 

  94. Pender JP, Jha G, Youn DH, Ziegler JM, Andoni I, Choi EJ, et al. Electrode degradation in lithium-ion batteries. ACS Nano. 2020;14:1243–95.

    Article  CAS  PubMed  Google Scholar 

  95. Yang J, Liu Y, Liu S, Li L, Zhang C, Liu T. Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front. 2017;1:251–68.

    Article  CAS  Google Scholar 

  96. Lai C-H, Ashby DS, Lin TC, Lau J, Dawson A, Tolbert SH, et al. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials. Chem Mater. 2018;30:2589–99.

    Article  CAS  Google Scholar 

  97. Savagian LR, Österholm AM, Ponder JF, Barth KJ, Rivnay J, Reynolds JR. Balancing charge storage and mobility in an oligo(ether) functionalized dioxythiophene copolymer for organic- and aqueous- based electrochemical devices and transistors. Adv Mater. 2018;30:1804647.

    Article  Google Scholar 

  98. Myung S-T, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun Y-K, et al. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J Phys Chem C. 2007;111:4061–7.

    Article  CAS  Google Scholar 

  99. Lin J, Peng H, Kim J-H, Wygant BR, Meyerson ML, Rodriguez R, et al. Lithium fluoride coated silicon nanocolumns as anodes for lithium ion batteries. ACS Appl Mater Interfaces. 2020;12:18465–72.

    Article  CAS  PubMed  Google Scholar 

  100. Henderick L, Hamed H, Mattelaer F, Minjauw M, Meersschaut J, Dendooven J, et al. Atomic layer deposition of nitrogen-doped Al phosphate coatings for Li-ion battery applications. ACS Appl Mater Interfaces. 2020;12:25949–60.

    Article  CAS  PubMed  Google Scholar 

  101. Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8:320–4.

    Article  CAS  PubMed  Google Scholar 

  102. Xiong X, Ding D, Bu Y, Wang Z, Huang B, Guo H, et al. Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4. J Mater Chem A. 2014;2:11691–6.

    Article  CAS  Google Scholar 

  103. Hwang S, Kim SM, Bak S-M, Kim SY, Cho B-W, Chung KY, et al. Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1–yzO2 cathode materials. Chem Mater. 2015;27:3927–35.

    Article  CAS  Google Scholar 

  104. Kim H, Kim MG, Jeong HY, Nam H, Cho J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 2015;15:2111–9.

    Article  CAS  PubMed  Google Scholar 

  105. Du K, Xie H, Hu G, Peng Z, Cao Y, Yu F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3. ACS Appl Mater Interfaces. 2016;8:17713–20.

    Article  CAS  PubMed  Google Scholar 

  106. Xiong X, Wang Z, Yin X, Guo H, Li X. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials. Mater Lett. 2013;110:4–9.

    Article  CAS  Google Scholar 

  107. Jo C-H, Cho D-H, Noh H-J, Yashiro H, Sun Y-K, Myung ST. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015;8:1464–79.

    Article  CAS  Google Scholar 

  108. Cao Y, Qi X, Hu K, Wang Y, Gan Z, Li Y, et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces. 2018;10:18270–80.

    Article  CAS  PubMed  Google Scholar 

  109. Yan H, Wu X, Li Y. Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries. Electrochimica Acta. 2015;182:437–44. Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0013468615305533?token=1662B7968C9C31AFC305D66D0FC39256678943FCA59503432034FE38B25DC2197677B93433F97323A5168B0E87953486&originRegion=us-east-1&originCreation=20220520235932, https://doi.org/10.1016/j.electacta.2015.09.141.

  110. Wang D, Wang X, Yang X, Yu R, Ge L, Shu H. Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources. 2015;293:89–94. Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0378775315009398?token=351A450745C2B9EFBFE3F5549FCD38D272470F5D90A2C7CB63C1AC8C652CD0529C2362EF73FA34953A42D9DFB49ECC6B&originRegion=us-east-1&originCreation=20220521000418, https://doi.org/10.1016/j.jpowsour.2015.05.058.

  111. Chen W-M, Qie L, Yuan L-X, Xia S-A, Hu X-L, Zhang W-X, et al. Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta. 2011;56:2689–95. Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0013468610016749?token=53799570880594B42070A769CAD7B14B65307532E5C8626C2115F68D009B5F8B2884A9A182D8C688E79BF5C804899988&originRegion=us-east-1&originCreation=20220521000652, https://doi.org/10.1016/j.electacta.2010.12.041.

  112. Chung S-Y, Chiang Y-M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem Solid-State Lett. 2003;6:A278.

    Article  CAS  Google Scholar 

  113. Herle PS, Ellis B, Coombs N, Nazar LF. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3:147–52.

    Article  CAS  PubMed  Google Scholar 

  114. Chueh WC, El Gabaly F, Sugar JD, Bartelt NC, McDaniel AH, Fenton KR, et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 2013;13:866–72.

    Article  CAS  PubMed  Google Scholar 

  115. Zhan L, Song Z, Zhang J, Tang J, Zhan H, Zhou Y, et al. PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim Acta. 2008;53:8319–23. https://reader.elsevier.com/reader/sd/pii/S0013468608007846?token=2F4446DEE7B8B47B34A9F606D66CAC6AA11133F47D144583FE9A0F939FF62D32B4AC8A6BF8D056C59296D50A3532865B&originRegion=us-east-1&originCreation=20220522011048.

    Article  CAS  Google Scholar 

  116. Dinh H-C, Mho S, Yeo I-H. Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology. Electroanalysis. 2011;23:2079–86.

    Article  CAS  Google Scholar 

  117. Cíntora-Juárez D, Pérez-Vicente C, Ahmad S, Tirado JL. Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating. RSC Adv. 2014;4:26108–14.

    Article  Google Scholar 

  118. Trinh ND, Saulnier M, Lepage D, Schougaard SB. Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries. J Power Sources. 2013;221:284–9. https://reader.elsevier.com/reader/sd/pii/S0378775312012657?token=DDB3420C28579BBAF9652ABA278819AA04BF18A157C90B04AA71960BDBCFC7D127DD7D6AA41A5C49C9FC3E13726469ED&originRegion=us-east-1&originCreation=20220522010030.

    Article  CAS  Google Scholar 

  119. Lepage D, Michot C, Liang G, Gauthier M, Schougaard SB. A soft chemistry approach to coating of LiFePO4 with a conducting. Polym Angew Chem Int Ed. 2011;50:6884–7.

    Article  CAS  Google Scholar 

  120. Vadivel Murugan A, Muruliganth T, Manthiram A. Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem Commun. 2008;10:903–6. https://reader.elsevier.com/reader/sd/pii/S138824810800132X?token=E8AAA4889DE51E6E178D0E8A5F6E3FDE6AE56BAF5BB768D7CF91CEC9B45981A831CA1C4847358CAA7F3358CD890229B3&originRegion=us-east-1&originCreation=20220522011957.

    Article  CAS  Google Scholar 

  121. Das PR, Komsiyska L, Osters O, Wittstock G. PEDOT: PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc. 2015;162:A674.

    Article  CAS  Google Scholar 

  122. Vicente N, Haro M, Cíntora-Juárez D, Pérez-Vicente C, Tirado JL, Ahmad S, et al. LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim Acta. 2015;163:323–9. https://reader.elsevier.com/reader/sd/pii/S0013468615004454?token=9E9E51EDE8F5C109082D226A64DED9E703DB7EE925F6D66903CC5905CF6A022620C6FD9064CAF450E40F348257E013FA&originRegion=us-east-1&originCreation=20220522005553.

    Article  CAS  Google Scholar 

  123. Eliseeva SN, Levin OV, Tolstopyatova EG, Alekseeva EV, Kondratiev VV. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries. Russ J Appl Chem. 2015;88:1146–9.

    Article  CAS  Google Scholar 

  124. Eliseeva SN, Levin OV, Tolstopjatova EG, Alekseeva EV, Apraksin RV, Kondratiev VV. New functional conducting poly-3,4-ethylenedioxythiopene_polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater Lett. 2015;161:117–9. https://reader.elsevier.com/reader/sd/pii/S0167577X15304341?token=E1212B9C6E4ED4169C22247BBCE3DF6E93DB2C7DF820B9F07FADAACD1FE29CB0FC3C1B82B9CE1F541A3FF8FC0F08D4B2&originRegion=us-east-1&originCreation=20220521191928.

    Article  CAS  Google Scholar 

  125. Zhong H, He A, Lu J, Sun M, He J, Zhang L. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries. J Power Sources. 2016;336:107–14. https://reader.elsevier.com/reader/sd/pii/S0378775316314331?token=031A1D76C59F0DB1C384056B4AD51537015E233119E5BEA88CA3C05BF52D5FD701E14FD69FEEFC8E35DB58D1937E27EA&originRegion=us-east-1&originCreation=20220522015158.

    Article  CAS  Google Scholar 

  126. Kubarkov AV, Drozhzhin OA, Karpushkin EA, Stevenson KJ, Antipov EV, Sergeyev VG. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)–polymer composites as functional cathode binders for high power LiFePO4 batteries. Colloid Polym Sci. 2019;297:475–84.

    Article  CAS  Google Scholar 

  127. Kim J-M, Park H-S, Park J-H, Kim T-H, Song H-K, Lee S-Y. Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents. ACS Appl Mater Interfaces. 2014;6:12789–97.

    Article  CAS  PubMed  Google Scholar 

  128. Eliseeva SN, Shkreba EV, Kamenskii MA, Tolstopjatova EG, Holze R, Kondratiev VV. Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ion. 2019;333:18–29. https://reader.elsevier.com/reader/sd/pii/S0167273818309536?token=F04A090A63CA0D6A4F84CD2E3D226BD1469A2D98A97319C11BEFDA2EB2E2126D35189F4E9E55365FF173C492E79819C0&originRegion=us-east-1&originCreation=20220523181711.

    Article  CAS  Google Scholar 

  129. Shao D, Zhong H, Zhang L. Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem. 2014;1:1679–87.

    Article  CAS  Google Scholar 

  130. Li X, An H, Strzalka J, Lutkenhaus J, Verduzco R. Self-doped conjugated polymeric binders improve the capacity and mechanical properties of V2O5 cathodes. Polymers. 2019;11:589.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Patel SN, Javier AE, Balsara NP. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano. 2013;7:6056–68.

    Article  CAS  PubMed  Google Scholar 

  132. Wu S-L, Javier AE, Devaux D, Balsara NP, Srinivasan V. Discharge characteristics of lithium battery electrodes with a semiconducting polymer studied by continuum modeling and experiment. J Electrochem Soc. 2014;161:A1836–A1843.

    Article  Google Scholar 

  133. An H, Li X, Smith KA, Zhang Y, Verduzco R, Lutkenhaus JL. Regioregularity and molecular weight effects in redox-active poly(3-hexylthiophene)-block-poly(ethylene oxide) electrode binders. ACS Appl Energy Mater. 2018;1:5919–27.

    Article  CAS  Google Scholar 

  134. An H, Li X, Chalker C, Stracke M, Verduzco R, Lutkenhaus JL. Conducting block copolymer binders for carbon-free hybrid vanadium pentoxide cathodes with enhanced performance. ACS Appl Mater Interfaces. 2016;8:28585–91.

    Article  CAS  PubMed  Google Scholar 

  135. Thelen JL, Wu S-L, Javier AE, Srinivasan V, Balsara NP, Patel SN. Relationship between mobility and lattice strain in electrochemically doped poly(3-hexylthiophene). ACS Macro Lett. 2015;4:1386–91.

    Article  CAS  PubMed  Google Scholar 

  136. Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim Acta. 2005;50:4649–54. https://reader.elsevier.com/reader/sd/pii/S0013468605001921?token=F4BBCEA4CFF2AEEB5979BA3813A3E13AD69FDF0D97380DCFF9B64C7F466643034D21C519975832E5A0A39BAB838202D1&originRegion=us-east-1&originCreation=20220521200619.

    Article  CAS  Google Scholar 

  137. Boyano I, Blazquez JA, Meatza ID, Bengoechea M, Miguel O, Grande H, et al. Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J Power Sources. 2010;195:5351–9. https://reader.elsevier.com/reader/sd/pii/S0378775310004192?token=C61EC40F31FEF77AEC7C2FB7B0C89FD0C1B2592F53E6026E2590E5F6CD7BA3822344FFC16FE9417921B9ADAA0A6171C4&originRegion=us-east-1&originCreation=20220521200351.

    Article  CAS  Google Scholar 

  138. Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater. 2017;7:1601507.

    Article  Google Scholar 

  139. Li J, Lin C, Weng M, Qiu Y, Chen P, Yang K, et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat Nanotechnol. 2021;16:599–605.

    Article  CAS  PubMed  Google Scholar 

  140. Mohanty D, Dahlberg K, King DM, David LA, Sefat AS, Wood DL, et al. Modification of Ni-Rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries. Sci Rep. 2016;6:26532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bak S-M, Nam K-W, Chang W, Yu X, Hu E, Hwang S, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem Mater. 2013;25:337–51.

    Article  CAS  Google Scholar 

  142. Sallis S, Pereira N, Mukherjee P, Quackenbush NF, Faenza N, Schlueter C, et al. Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: correlating charge transfer impedance with surface phase transformations. Appl Phys Lett. 2016;108:263902.

    Article  Google Scholar 

  143. Hayashi T, Okada J, Toda E, Kuzuo R, Oshimura N, Kuwata N, et al. Degradation mechanism of LiNi0.82Co0.15Al0.03O2 positive electrodes of a lithium-ion battery by a long-term cycling test. J Electrochem Soc. 2014;161:A1007–A1011.

    Article  CAS  Google Scholar 

  144. Liu H, Wolf M, Karki K, Yu Y-S, Stach EA, Cabana J, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2017;17:3452–7.

    Article  CAS  PubMed  Google Scholar 

  145. Makimura Y, Zheng S, Ikuhara Y, Ukyo Y. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. J Electrochem Soc. 2012;159:A1070–A1073.

    Article  CAS  Google Scholar 

  146. Chen D, Nakahara A, Wei D, Nordlund D, Russell TP. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Lett. 2011;11:561–7.

    Article  CAS  PubMed  Google Scholar 

  147. Bannock JH, Treat ND, Chabinyc M, Stingelin N, Heeney M, de Mello JC. The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells. Sci Rep. 2016;6:23651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F. Spectroscopic studies of soluble poly(3-alkylthienylenes). Macromolecules. 1987;20:212–5.

    Article  CAS  Google Scholar 

  149. Neusser D, Malacrida C, Kern M, Gross YM, van Slageren J, Ludwigs S. High conductivities of disordered P3HT films by an electrochemical doping strategy. Chem Mater. 2020;32:6003–13.

    Article  CAS  Google Scholar 

  150. Lim E, Peterson KA, Su GM, Chabinyc ML. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem Mater. 2018;30:998–1010.

    Article  CAS  Google Scholar 

  151. Pankow RM, Thompson BC. Approaches for improving the sustainability of conjugated polymer synthesis using direct arylation polymerization (DArP). Polym Chem. 2020;11:630–40.

    Article  CAS  Google Scholar 

  152. Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). J Polym Sci. 2022;60:393–428.

    Article  CAS  Google Scholar 

  153. Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110:268–320.

    Article  CAS  PubMed  Google Scholar 

  154. Reeves BD, Grenier CRG, Argun AA, Cirpan A, McCarley TD, Reynolds JR. Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules. 2004;37:7559–69.

    Article  CAS  Google Scholar 

  155. Thompson BC, Kim Y-G, McCarley TD, Reynolds JR. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. J Am Chem Soc. 2006;128:12714–25.

    Article  CAS  PubMed  Google Scholar 

  156. Thompson BC, Kim Y-G, Reynolds JR. Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene−dioxythiophene polymer. Macromolecules. 2005;38:5359–62.

    Article  CAS  Google Scholar 

  157. McDonald MB, Hammond PT. Efficient transport networks in a dual electron/lithium-conducting polymeric composite for electrochemical applications. ACS Appl Mater Interfaces. 2018;10:15681–90.

    Article  CAS  PubMed  Google Scholar 

  158. Elizalde-Segovia R, Das P, Zayat B, Irshad A, Thompson BC, Narayanan SR. Understanding the role of π-conjugated polymers as binders in enabling designs for high-energy/high-rate lithium metal batteries. J Electrochem Soc. 2021;168:110541.

    Article  CAS  Google Scholar 

  159. Patnaik SG, Vedarajan R, Matsumi N. Rational design of a BIAN-based multi-functional additive for higher durability and performance of LiMn1/3Ni1/3Co1/3O2 cathodes. Mol Syst Des Eng. 2019;4:939–50.

    Article  CAS  Google Scholar 

  160. Gupta A, Badam R, Matsumi N. Heavy-duty performance from silicon anodes using poly(BIAN)/Poly(acrylic acid)-based self-healing composite binder in lithium-ion secondary batteries. ACS Appl Energy Mater. 2022;5:7977–87.

    Article  CAS  Google Scholar 

  161. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces. 2010;2:3004–10.

    Article  CAS  PubMed  Google Scholar 

  162. Mazouzi D, Lestriez B, Roué L, Guyomard D. Silicon composite electrode with high capacity and long cycle life. Electrochem Solid-State Lett. 2009;12:A215.

    Article  CAS  Google Scholar 

  163. Li J, Dahn JR. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc. 2007;154:A156.

    Article  CAS  Google Scholar 

  164. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11:2949–54.

    Article  CAS  PubMed  Google Scholar 

  165. Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater. 2011;23:4679–83.

    Article  CAS  PubMed  Google Scholar 

  166. Park S-J, Zhao H, Ai G, Wang C, Song X, Yuca N, et al. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J Am Chem Soc. 2015;137:2565–71.

    Article  CAS  PubMed  Google Scholar 

  167. Zhao H, Wei Y, Qiao R, Zhu C, Zheng Z, Ling M, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett. 2015;15:7927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhao H, Du A, Ling M, Battaglia V, Liu G. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim Acta. 2016;209:159–62. https://reader.elsevier.com/reader/sd/pii/S001346861631115X?token=BAD929F4B146609C22E8A40D33C84910CFECBA352A59DE767AABD858B9CCC684FDD1EF5B04D13FF57F831897210EE4E9&originRegion=us-east-1&originCreation=20220513001150.

    Article  CAS  Google Scholar 

  169. Zhao H, Wei Y, Wang C, Qiao R, Yang W, Messersmith PB, et al. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries. ACS Appl Mater Interfaces. 2018;10:5440–6.

    Article  CAS  PubMed  Google Scholar 

  170. Ranque P, George C, Dubey RK, van der Jagt R, Flahaut D, Dedryvère R, et al. Scalable route to electroactive and light active perylene diimide dye polymer binder for lithium-ion batteries. ACS Appl Energy Mater. 2020;3:2271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, et al. Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc. 2013;135:12048–56.

    Article  CAS  PubMed  Google Scholar 

  172. Liu G, Baker GL. Structure-directed self-assembly of alkyl-aryl-ethylene oxide amphiphiles. Soft Matter. 2008;4:1094.

    Article  CAS  PubMed  Google Scholar 

  173. Ai G, Dai Y, Ye Y, Mao W, Wang Z, Zhao H, et al. Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy. 2015;16:28–37.

    Article  CAS  Google Scholar 

  174. Zhao H, Yuca N, Zheng Z, Fu Y, Battaglia VS, Abdelbast G, et al. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7:862–6.

    Article  CAS  PubMed  Google Scholar 

  175. Zhao H, Fu Y, Ling M, Jia Z, Song X, Chen Z, et al. Conductive polymer binder-enabled SiO–SnxCoyCz anode for high-energy lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8:13373–7.

    Article  CAS  PubMed  Google Scholar 

  176. Zeng W, Wang L, Peng X, Liu T, Jiang Y, Qin F, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater. 2018;8:1702314.

    Article  Google Scholar 

  177. Salem N, Lavrisa M, Abu-Lebdeh Y. Ionically-functionalized poly(thiophene) conductive polymers as binders for silicon and graphite anodes for Li-ion batteries. Energy Technol. 2016;4:331–40.

    Article  CAS  Google Scholar 

  178. Wang K-L, Kuo T-H, Yao C-F, Chang S-W, Yang Y-S, Huang H-K, et al. Cyclopentadithiophene-benzoic acid copolymers as conductive binders for silicon nanoparticles in anode electrodes of lithium ion batteries. Chem Commun. 2017;53:1856–9.

    Article  CAS  Google Scholar 

  179. Liu D, Zhao Y, Tan R, Tian L-L, Liu Y, Chen H, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy. 2017;36:206–12. https://reader.elsevier.com/reader/sd/pii/S2211285517302458?token=E5364B54A82FAB550CA4C017CD6624E4D0751E6B1F1A9A990BC78F839F59FB0AFB1DFF71C1A7BBA6844A66478E6FB382&originRegion=us-east-1&originCreation=20220520203859.

    Article  CAS  Google Scholar 

  180. Zhao Y, Yang L, Liu D, Hu J, Han L, Wang Z, et al. A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2018;10:1672–7.

    Article  CAS  PubMed  Google Scholar 

  181. Kim S-M, Kim MH, Choi SY, Lee JG, Jang J, Lee JB, et al. Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ Sci 2015;8:1538–43.

    Article  CAS  Google Scholar 

  182. Zhang C, Chen Q, Ai X, Li X, Xie Q, Cheng Y, et al. Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. J Mater Chem A. 2020;8:16323–31.

    Article  CAS  Google Scholar 

  183. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52–76. https://reader.elsevier.com/reader/sd/pii/S0008622316302676?token=0532522E3EDC6863228FB2A1D99B9BE17EEA3103D8980094F2235EE0ACB790F96904397B633563920E53A3CF08245BED&originRegion=us-east-1&originCreation=20220718200732.

    Article  CAS  Google Scholar 

  184. Waldmann T, Hogg B-I, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells – a review. J Power Sources. 2018;384:107–24. https://reader.elsevier.com/reader/sd/pii/S0378775318301848?token=85B0CC1F31D603363FBF5BC54263D60D22C66EA114B2B2BF6DE90361F49E9AEE2BD2A58C6B770B06D52E410461BB079F&originRegion=us-east-1&originCreation=20220718195650.

    Article  CAS  Google Scholar 

  185. Song H, Jeong T-G, Yun S-W, Lee E-K, Park S-A, Kim Y-T. An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries. Sci Rep. 2017;7:43335.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ohzuku T, Ueda A, Yamamoto N. Zero‐strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc. 1995;142:1431–5.

    Article  CAS  Google Scholar 

  187. Zhao B, Ran R, Liu M, Shao Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R Rep. 2015;98:1–71. https://reader.elsevier.com/reader/sd/pii/S0927796X15000856?token=2615F04714D297C9C2D9612B3BEFBE1E534E2036E43DAD66B9968A14AA99922896D6B8F970C9471478E8ED35FDF16CB4&originRegion=us-east-1&originCreation=20220718201743.

    Article  Google Scholar 

  188. Yuan T, Yu X, Cai R, Zhou Y, Shao Z. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J Power Sources. 2010;195:4997–5004. https://reader.elsevier.com/reader/sd/pii/S037877531000265X?token=4864AD830B7B11BCCF90D207DB10C3351B635BD54F2799978EB469498095268CA08A39C047857A4D9EDD9988E964089A&originRegion=us-east-1&originCreation=20220718202046.

    Article  CAS  Google Scholar 

  189. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries. J Electrochem Soc. 2001;148:A102–A104.

    Article  CAS  Google Scholar 

  190. Bach S, Pereira-Ramos JP, Baffier N. Electrochemical properties of sol-gel Li4/3Ti5/3O4. J Power Sources. 1999;81-82:273–6. https://reader.elsevier.com/reader/sd/pii/S037877539800216X?token=389024C74A2FF36A31C3D8A6431CFDDC7FDF732C37B12DB9F36A14DDA593F3C1DFA44BDE3E96BB10556377FCB7ECDFBA&originRegion=us-east-1&originCreation=20220718202626.

    Article  CAS  Google Scholar 

  191. Ito S, Nakaoka K, Kawamura M, Ui K, Fujimoto K, Koura N. Lithium battery having a large capacity using Fe3O4 as a cathode material. J Power Sources. 2005;146:319–22. https://reader.elsevier.com/reader/sd/pii/S0378775305003654?token=7F49D98AF552C7EA8F5266FF3D1084F8752E2B9551437DD457C0FB35E3E80AC1B1467E8649B4E2E80CD8CE461757F5D1&originRegion=us-east-1&originCreation=20220510000014.

    Article  CAS  Google Scholar 

  192. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater. 2006;5:567–73.

    Article  CAS  PubMed  Google Scholar 

  193. Kwon YH, Huie MM, Choi D, Chang M, Marschilok AC, Takeuchi KJ, et al. Toward uniformly dispersed battery electrode composite materials: characteristics and performance. ACS Appl Mater Interfaces. 2016;8:3452–63.

    Article  CAS  PubMed  Google Scholar 

  194. Samanta SK, Fritsch M, Scherf U, Gomulya W, Bisri SZ, Loi MA. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Acc Chem Res. 2014;47:2446–56.

    Article  CAS  PubMed  Google Scholar 

  195. Kwon YH, Minnici K, Huie MM, Takeuchi KJ, Takeuchi ES, Marschilok AC, et al. Electron/ion transport enhancer in high capacity Li-ion battery anodes. Chem Mater. 2016;28:6689–97.

    Article  CAS  Google Scholar 

  196. Kwon YH, Park JJ, Housel LM, Minnici K, Zhang G, Lee SR, et al. Carbon nanotube web with carboxylated polythiophene “assist” for high-performance battery electrodes. ACS Nano. 2018;12:3126–39.

    Article  CAS  PubMed  Google Scholar 

  197. Gobalasingham NS, Thompson BC. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog Polym Sci. 2018;83:135–201.

    Article  CAS  Google Scholar 

  198. Sekine S, Ido Y, Miyake T, Nagamine K, Nishizawa M. Conducting polymer electrodes printed on hydrogel. J Am Chem Soc. 2010;132:13174–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Synthetic Control Across Length-Scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0019381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry C. Thompson.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Thompson, B.C. Development of design strategies for conjugated polymer binders in lithium-ion batteries. Polym J 55, 317–341 (2023). https://doi.org/10.1038/s41428-022-00708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00708-x

Search

Quick links