Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Synthesis of electron deficient semiconducting polymers for intrinsically stretchable n-type semiconducting materials

Abstract

In the future Internet of Everything (IoE) society, wearable intelligent electronic devices will receive much attention. Semiconducting polymer materials with good stress-releasing properties have been sought for development of novel intrinsically stretchable semiconducting materials that possess excellent mechanical properties and endurance toward applied strains. Recently, strategies for modulating π-conjugated polymers have been developed to produce intrinsically stretchable semiconducting materials possessing excellent electronic and stress-releasing properties. Indeed, intrinsically stretchable “p-type” semiconducting polymer materials have been developed based on both main-chain engineering and side-chain engineering. However, only a few examples of intrinsically stretchable “n-type” semiconducting polymer materials have been reported. In this focus review, our recent progress in main-chain engineering for development of intrinsically stretchable n-type semiconducting materials is described. The topics include four strategies, namely, (i) a conjugation-break spacer approach, (ii) a block copolymer approach, (iii) an all-conjugated statistical terpolymer approach, and (iv) a sequence random copolymer approach, in which specially designed stress-relaxation units or sequences are incorporated along the main chains of naphthalene-diimide-based n-type semiconducting polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl Phys Lett. 1986;49:1210–2.

    Article  CAS  Google Scholar 

  2. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science. 1998;280:1741–4.

    Article  CAS  PubMed  Google Scholar 

  3. Yao Y, Dong H, Liu F, Russell TP, Hu W. Approaching intra- and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals. Adv Mater. 2017;29:1701251.

    Article  Google Scholar 

  4. Zhao Y, Zhao X, Zang Y, Di C, Diao Y, Mei J. Conjugation-break spacers in semiconducting polymers: impact on polymer processability and charge transport properties. Macromolecules. 2015;48:2048–53.

    Article  CAS  Google Scholar 

  5. Melenbrink EL, Hilby KM, Alkhadra MA, Samal S, Lipomi DJ, Thompson BC. Influence of systematic incorporation of conjugation-break spacers into semi-random polymers on mechanical and electronic properties. ACS Appl Mater Interfaces. 2018;10:32426–34.

    Article  CAS  PubMed  Google Scholar 

  6. Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL, Kang J, et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv Funct Mater. 2018;28:1804222.

    Article  Google Scholar 

  7. Melenbrink EL, Hilby KM, Choudhary K, Samal S, Kazerouni N, McConn JL, et al. Influence of acceptor side-chain length and conjugation-break spacer content on the mechanical and electronic properties of semi-random polymers. ACS Appl Polym Mater. 2019;1:1107–17.

    Article  CAS  Google Scholar 

  8. Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F, Wang GJN, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016;539:411–5.

    Article  CAS  PubMed  Google Scholar 

  9. Galuska LA, McNutt WW, Qian Z, Zhang S, Weller DW, Dhakal S, et al. Impact of backbone rigidity on the thermomechanical properties of semiconducting polymers with conjugation break spacers. Macromolecules. 2020;53:6032–42.

    Article  CAS  Google Scholar 

  10. Chen AX, Kleinschmidt AT, Choudhary K, Lipomi DJ. Beyond stretchability: strength, toughness, and elastic range in semiconducting polymers. Chem Mater. 2020;32:7582–601.

    Article  CAS  Google Scholar 

  11. Lin YC, Matsuda M, Chen CK, Yang WC, Chueh CC, Higashihara T, et al. Investigation of the mobility–stretchability properties of naphthalenediimide-based conjugated random terpolymers with a functionalized conjugation break spacer. Macromolecules. 2021;54:7388–99.

    Article  CAS  Google Scholar 

  12. Lin YC, Matsuda M, Sato K, Chen CK, Yang WC, Chueh CC, et al. Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polym Chem. 2021;12:6167–78.

    Article  CAS  Google Scholar 

  13. Printz AD, Savagatrup S, Burke DJ, Purdya TN, Lipomi DJ. Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv. 2014;4:13635–43.

    Article  CAS  Google Scholar 

  14. Lin YC, Huang YW, Hung CC, Chiang YC, Chen CK, Hsu LC, et al. Backbone engineering of diketopyrrolopyrrole-based conjugated polymers through random terpolymerization for improved mobility-stretchability property. ACS Appl Mater Interfaces. 2020;12:50648–59.

    Article  CAS  PubMed  Google Scholar 

  15. Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD, Janssen RAJ, et al. Stingelin-Stutzmann N. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater. 2007;17:2674–9.

    Article  Google Scholar 

  16. Wang JT, Takshima S, Wu HC, Shih CC, Isono T, Kakuchi T, et al. Stretchable conjugated rod–coil poly(3-hexylthiophene)-block-poly(butyl acrylate) thin films for field effect transistor applications. Macromolecules. 2017;50:1442–52.

    Article  CAS  Google Scholar 

  17. Peng R, Pang B, Hu D, Chen M, Zhang G, Wang X, et al. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J Mater Chem C. 2015;3:3599–606.

    Article  CAS  Google Scholar 

  18. Miyane S, Mori H, Higashihara T. Synthesis and characterization of all-conjugated hard-soft-hard ABA triblock copolythiophene. Microsist Technol. 2016;22:3–10.

    Article  CAS  Google Scholar 

  19. Li X, Wolanin PJ, MacFarlane LR, Harniman RL, Qian J, Gould OEC, et al. Uniform electroactive fibre-like micelle nanowires for organic electronics. Nat Commun. 2017;8:15909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goto E, Ochiai Y, Lo CT, Koganezawa T, Ueda M, Higashihara T. Synthesis of regioblock copolythiophene by Negishi catalyst-transfer polycondensation using tBu2Zn·2LiCl. Polym Chem. 2017;8:6143–9.

    Article  CAS  Google Scholar 

  21. Sugiyama F, Kleinschmidt AT, Kayser LV, Alkhadra MA, Wan JM, Chiang AS, et al. Stretchable and degradable semiconducting block copolymers. Macromolecules. 2018;51:5944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyane S, Wen HF, Chen WC, Higashihara T. Synthesis of block copolymers comprised of poly(3-hexylthiophene) segment with trisiloxane side chains and their application to organic thin film transistor. J Polym Sci Part A: Polym Chem. 2018;56:1787–94.

    Article  CAS  Google Scholar 

  23. Higashihara T, Fukuta S, Ochiai Y, Sekine T, Chino K, Koganezawa T, et al. Synthesis and deformable hierarchical nanostructure of intrinsically stretchable ABA triblock copolymer comprised of poly(3-hexylthiophene) and polyisobutylene segments. ACS Appl Polym Mater. 2019;1:315–20.

    Article  CAS  Google Scholar 

  24. Higashihara T, Fukuta S, Koganezawa T, Chino K. Morphological study of blend thin films of poly(3-hexylthiophene)-block-polyisobutylene-block-poly(3-hexylthiophene):poly(3-hexylthiophene) and their application to photovoltaics. J Photopolym Sci Technol. 2019;32:741–6.

    Article  CAS  Google Scholar 

  25. Park H, Ma BS, Kim JS, Kim Y, Kim HJ, Kim D, et al. Regioregular-block-regiorandom poly(3-hexylthiophene) copolymers for mechanically robust and high-performance thin-film transistors. Macromolecules. 2019;52:7721–30.

    Article  CAS  Google Scholar 

  26. Lei T, Dou JH, Pei J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater. 2012;24:6457–61.

    Article  CAS  PubMed  Google Scholar 

  27. Wu HC, Hung CC, Hong CW, Sun HS, Wang JT, Yamashita G, et al. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors. Macromolecules. 2016;49:8540–8.

    Article  CAS  Google Scholar 

  28. Chiang YC, Wu HC, Wen HF, Hung CC, Hong CW, Kuo CC, et al. Tailoring carbosilane side chains toward intrinsically stretchable semiconducting polymers. Macromolecules. 2019;52:4396–404.

    Article  CAS  Google Scholar 

  29. Lin YC, Chen CK, Chiang YC, Hung CC, Fu MC, Inagaki S, et al. Study on intrinsic stretchability of diketopyrrolopyrrole-based π-conjugated copolymers with poly(acryl amide) side chains for organic field-effect transistors. ACS Appl Mater Interfaces. 2020;12:33014–27.

    Article  CAS  PubMed  Google Scholar 

  30. Saito Y, Sakai Y, Higashihara T, Ueda M. Direct patterning of poly(3-hexylthiophene) and its application to organic field-effect transistor. RSC Adv. 2012;2:1285–8.

    Article  CAS  Google Scholar 

  31. Wang GJN, Shaw L, Xu J, Kurosawa T, Schroeder BC, Oh JY, et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Funct Mater. 2016;26:7254–62.

    Article  CAS  Google Scholar 

  32. Miyane S, Higashihara T. Development of cross-linked polythiophene with oligoisobutylene side chains. The 67th SPSJ meeting. Prepr; 2018. No. 3D07.

  33. Wang GJN, Zheng Y, Zhang S, Kang J, Wu HC, Gasperini A, et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater. 2019;31:6465–75.

    Article  CAS  Google Scholar 

  34. Wu HC, Lissel F, Wang GJN, Koshy DM, Nikzad S, Yan H, et al. Metal-ligand based mechanophores enhance both mechanical robustness and electronic performance of polymer semiconductors. Adv Funct Mater. 2021;31:2009201.

    Article  CAS  Google Scholar 

  35. Higashihara T. Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polym J. 2021;53:1061–71.

    Article  CAS  Google Scholar 

  36. Zheng Y, Zhang S, Tok JBH, Bao Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J Am Chem Soc. 2022;144:4699–715.

    Article  CAS  PubMed  Google Scholar 

  37. Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X. n-Type organic semiconductors in organic electronics. Adv Mater. 2010;22:3876–92.

    Article  CAS  PubMed  Google Scholar 

  38. Guo X, Facchetti A, Marks TJ. Imide- and amide-functionalized polymer semiconductors. Chem Rev. 2014;114:8943–9021.

    Article  CAS  PubMed  Google Scholar 

  39. Genene Z, Mammo W, Wang E, Andersson MR. Recent Advances in n-type polymers for all-polymer solar cells. Adv Mater. 2019;31:1807275.

    Article  Google Scholar 

  40. Sui Y, Deng Y, Du T, Shi Y, Geng Y. Design strategies of n-type conjugated polymers for organic thin-film transistors. Mater Chem Front. 2019;3:1932–51.

    Article  CAS  Google Scholar 

  41. Sun H, Guo X, Facchetti A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem. 2020;6:1310–26.

    Article  CAS  Google Scholar 

  42. Huang J, Yu G. Structural engineering in polymer semiconductors with aromatic N-heterocycles. Chem Mater. 2021;33:1513–39.

    Article  CAS  Google Scholar 

  43. Chen Z, Zheng Y, Yan H, Facchetti A. Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-bate n-channel organic transistors. J Am Chem Soc. 2009;131:8–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc. 2007;129:7246–7.

    Article  CAS  PubMed  Google Scholar 

  45. Fukutomi Y, Nakano M, Hu JY, Osaka I, Takimiya K. Naphthodithiophenediimide (NDTI): synthesis, structure, and applications. J Am Chem Soc. 2013;135:11445–8.

    Article  CAS  PubMed  Google Scholar 

  46. Tu D, Qiao Y, Ni Y, Guo X, Li C. Structural engineering of anthracene diimide polymers for molecular ordering manipulation. Macromolecules. 2022;55:4102–10.

    Article  CAS  Google Scholar 

  47. Usta H, Facchetti A, Marks TJ. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J Am Chem Soc. 2008;130:8580–1.

    Article  CAS  PubMed  Google Scholar 

  48. Gao Y, Deng Y, Tian H, Zhang J, Yan D, Geng Y, et al. Multifluorination toward high-mobility ambipolar and unipolar n-type donor–acceptor conjugated polymers based on isoindigo. Adv Mater. 2017;29:1606217.

    Article  Google Scholar 

  49. Mueller CJ, Singh CR, Fried M, Huettner S, Thelakkat M. High bulk electron mobility diketopyrrolopyrrole copolymers with perfluorothiophene. Adv Funct Mater. 2015;25:2725–36.

    Article  CAS  Google Scholar 

  50. Li R, Dai Z, Zheng M, Wang C, Deng Z, Zhuang T, et al. Benzo/naphthodifuranone-based polymers: effect of perpendicular-extended main chain π-conjugation on organic field-effect transistor performances. Macromol Rapid Commun. 2021;42:2000703.

    Article  CAS  Google Scholar 

  51. Iguchi K, Mikie T, Saito M, Komeyama K, Seo T, Ie Y, et al. N-type semiconducting polymers based on dicyano naphthobisthiadiazole: high electron mobility with unfavorable backbone twist. Chem Mater. 2021;33:2218–28.

    Article  CAS  Google Scholar 

  52. Mikie T, Okamoto K, Iwasaki Y, Koganezawa T, Sumiya M, Okamoto T, et al. Naphthobispyrazine bisimide: a strong acceptor unit for conjugated polymers enabling highly coplanar backbone, short π–π stacking, and high electron transport. Chem Mater. 2022;34:2717–29.

    Article  CAS  Google Scholar 

  53. Lei T, Dou JH, Cao XY, Wang JY, Pei J. A BDOPV-based donor–acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. Adv Mater. 2013;25:6589–93.

    Article  CAS  PubMed  Google Scholar 

  54. Zheng YQ, Lei T, Dou JH, Xia X, Wang JY, Liu CJ, et al. Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors. Adv Mater. 2016;28:7213–9.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Guo H, Harbuzaru A, Uddin MA, Arrechea-Marcos I, Ling S. et al. (Semi)laddertype bithiophene imide-based all-acceptor semiconductors: synthesis, structure–property correlations, and unipolar n-type transistor performance. J Am Chem Soc. 2018;140: 6095–108.

  56. Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding. J Am Chem Soc. 2019;141:3566–75.

    Article  CAS  PubMed  Google Scholar 

  57. Choi J, Kim W, Kim D, Kim S, Chae J, Choi SQ, et al. Importance of critical molecular weight of semicrystalline n-type polymers for mechanically robust, efficient electroactive thin films. Chem Mater. 2019;31:3163–73.

    Article  CAS  Google Scholar 

  58. Zhang S, Cheng YH, Galuska L, Roy A, Lorenz M, Chen B, et al. Tacky elastomers to enable tear-resistant and autonomous self-healing semiconductor composites. Adv Funct Mater. 2020;30:2000663.

    Article  CAS  Google Scholar 

  59. Tian F, Chen H, Du Y, Chen J, Wang X, Lu H, et al. Rational molecular design for isoindigo-based polymer semiconductors with high ductility and high electrical performance. J Mater Chem C. 2019;7:11639–49.

    Article  CAS  Google Scholar 

  60. Erdmann T, Fabiano S, Milián-Medina B, Hanifi D, Chen Z, Berggren M, et al. Naphthalenediimide polymers with finely tuned in-chain π-conjugation: electronic structure, film microstructure, and charge transport properties. Adv Mater. 2016;28:9169–74.

    Article  CAS  PubMed  Google Scholar 

  61. Bates CM, Bates FS. 50th anniversary perspective: block polymers-pure potential. Macromolecules. 2017;50:3–22.

    Article  CAS  Google Scholar 

  62. Lodge TP. Block copolymers: long-term growth with added value. Macromolecules. 2020;53:2–4.

    Article  CAS  Google Scholar 

  63. Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD, Janssen RAJ, et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater. 2007;17:2674–79.

    Article  Google Scholar 

  64. Sato K, Hemmi Y, Kato A, Matsui H, Fuchise K, Higashihara T. Precise synthesis of α,ω-chain-end-functionalized poly(dimethylsiloxane) with bromoaryl groups for incorporation in naphthalene-diimide-based N-type semiconducting polymers. Polymer. 2022;252:124934.

    Article  CAS  Google Scholar 

  65. Mun J, Ochiai Y, Wang W, Zheng Y, Zheng YQ, Wu HC, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021;12:3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin YC, Terayama K, Yoshida K, Yu PJ, Chueh PH, Chueh CC, et al. Strain-insensitive naphthalene-diimide-based conjugated polymers through sequential regularity control. Mater Chem Front. 2022;6:891–900.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TH thanks the Japan Society for the Promotion of Science (JSPS), KAKENHI (No. 21H02009) and Tokuyama Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Higashihara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, M., Sato, Ki., Terayama, K. et al. Synthesis of electron deficient semiconducting polymers for intrinsically stretchable n-type semiconducting materials. Polym J 55, 365–373 (2023). https://doi.org/10.1038/s41428-022-00729-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00729-6

Search

Quick links