Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of hydrophilic poly(vinyl alcohol)-containing amphiphilic diblock copolymers and their self-association in water

Abstract

A series of amphiphilic diblock copolymers (PVAm-b-PVPin: AmPn = A82P6, A72P26, and A70P74) with different block lengths of hydrophilic poly(vinyl alcohol) (PVA, A) and hydrophobic poly(vinyl pivalate) (PVPi, P) blocks were prepared. AmPn was synthesized from a poly(vinyl acetate)-b-P (PVAc-b-P) diblock copolymer by selectively hydrolyzing the pendant acetyl groups in PVAc. In water, AmPn polymers formed spherical polymer micelles with a PVPi core and a PVA shell due to hydrophobic interactions between the PVPi blocks. The hydrodynamic radius (Rh), light scattering intensity (LSI), and aggregation number (Nagg) of AmPn increased with increasing PVPi block length. Conversely, the critical micelle concentration (CMC) was reduced due to stronger hydrophobic interactions. This study promotes potential applications for AmPn micelles to be used as nanocarriers for hydrophobic anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bas S, Soucek MD. Synthesis, characterization and properties of amphiphilic block copolymers of 2-hydroxyethyl methacrylate and polydimethylsiloxane prepared by atom transfer radical polymerization. Polym J. 2012;44:1087–97.

    Article  CAS  Google Scholar 

  2. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92:1343–55.

    Article  CAS  PubMed  Google Scholar 

  3. Duan Z, Zhang Y, Zhu H, Sun L, Cai H, Li B, et al. Stimuli-sensitive biodegradable and amphiphilic block copolymer-gemcitabine conjugates self-assemble into a nanoscale vehicle for cancer therapy. ACS Appl Mater Interfaces. 2017;9:3474–86.

    Article  CAS  PubMed  Google Scholar 

  4. Sabra S, Abdelmoneem M, Abdelwakil M, Mabrouk MT, Anwar D, Mohamed R, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti- cancer drug delivery applications. Curr Pharm Des. 2017;23:5213–29.

    CAS  PubMed  Google Scholar 

  5. Kwon GS, Forrest ML. Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Dev Res. 2006;67:15–22.

    Article  CAS  Google Scholar 

  6. Shi Y, Van Nostrum CF, Hennink WE. Interfacially hydrazone cross-linked thermosensitive polymeric micelles for acid-triggered release of paclitaxel. ACS Biomater Sci Eng. 2015;1:393–404.

    Article  CAS  PubMed  Google Scholar 

  7. Hussein YHA, Youssry M. Polymeric micelles of biodegradable diblock copolymers: Enhanced encapsulation of hydrophobic drugs. Materials. 2018;11:688.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeong YIL, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, et al. Clonazepam release from core-shell type nanoparticles in vitro. J Control Release. 1998;51:169–78.

    Article  CAS  PubMed  Google Scholar 

  9. Kutikov AB, Song J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater Sci Eng. 2015;1:463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin IG, Kim SY, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol)/epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization. J Control Release. 1998;51:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Ferruti P, Penco M, D’Addato P, Ranucci E, Deghenghi R. Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments. Biomaterials. 1995;16:1423–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997;48:195–201.

    Article  CAS  Google Scholar 

  13. Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, et al. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy and fluorescence experiments. Biomacromolecules. 2006;7:817–28.

    Article  CAS  PubMed  Google Scholar 

  14. Salvage JP, Thom C, Lewis AL, Phillips GJ, Lloyd AW. Nanoprecipitation of polymeric nanoparticle micelles based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), for intracellular delivery applications. J Mater Sci Mater Med. 2015;26:150.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cristiano CMZ, Soldi V, Li C, Armes SP, Rochas C, Pignot-Paintrand I, et al. Thermo-responsive copolymers based on poly(N-isopropylacrylamide) and poly[2-(methacryloyloxy)ethyl phosphorylcholine]: Light scattering and microscopy experiments. Macromol Chem Phys. 2009;210:1726–33.

    Article  CAS  Google Scholar 

  16. Liu G, Luo Q, Gao H, Chen Y, Wei X, Dai H, et al. Cell membrane-inspired polymeric micelles as carriers for drug delivery. Biomater Sci. 2015;3:490–9.

    Article  CAS  PubMed  Google Scholar 

  17. Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13:064101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hyon SHH, Cha WI, Ikada Y, Kita M, Ogura Y, Honda Y. Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 1994;5:397–406.

    Article  CAS  PubMed  Google Scholar 

  19. Tummala GK, Rojas R, Mihranyan A. Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: General characteristics and optical properties. J Phys Chem B. 2016;120:13094–101.

    Article  CAS  PubMed  Google Scholar 

  20. Bray JC, Merrill EW. Poly(vinyl alcohol) hydrogels for synthetic articular cartilage material. J Biomed Mater Res. 1973;7:431–43.

    Article  CAS  PubMed  Google Scholar 

  21. Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, et al. Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater. 2010;92:568–76.

    PubMed  Google Scholar 

  22. Chen C, Liu L, Huang T, Wang Q, Fang Y. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications. Int J Biol Macromol. 2013;62:188–93.

    Article  CAS  PubMed  Google Scholar 

  23. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy ES. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem. 2015;8:1–14.

    Article  CAS  Google Scholar 

  24. Weis C, Odermatt EK, Kressler J, Funke Z, Wehner T, Freytag D. Poly(vinyl alcohol) membranes for adhesion prevention. J Biomed Mater Res B Appl Biomater. 2004;70:191–202.

    Article  PubMed  Google Scholar 

  25. Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, et al. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm. 2019;559:299–311.

    Article  CAS  PubMed  Google Scholar 

  26. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AA, Mohamad AB, Al-Amiery AA. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules. 2015;20:22833–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. 2003;14:687–91.

    Article  CAS  PubMed  Google Scholar 

  28. Cavalieri F, Chiessi E, Villa R, Viganò L, Zaffaroni N, Telling MF, et al. Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules 2008;9:1967–73.

    Article  CAS  PubMed  Google Scholar 

  29. Breitenbach A, Kissel T. Biodegradable comb polyesters: Part 1 synthesis, characterization and structural analysis of poly(lactide) and poly(lactide-coglycolide) grafted onto water-soluble poly(vinyl alcohol) as backbone. Polymer. 1998;39:3261–71.

    Article  CAS  Google Scholar 

  30. Kanimozhi K, KhaleelBasha S, SuganthaKumari V, Kaviyarasu K. Development and characterization of sodium alginate/poly(vinyl alcohol) blend scaffold with ciprofloxacin loaded in controlled drug delivery system. J Nanosci Nanotechnol. 2019;19:2493–500.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy DJ, Sankalia MG, Loughlin RG, Donnelly RF, Jenkins MG, Mccarron PA. Physical characterisation and component release of poly(vinyl alcohol)–tetrahydroxyborate hydrogels and their applicability as potential topical drug delivery systems. Int J Pharm. 2012;423:326–34.

    Article  CAS  PubMed  Google Scholar 

  32. Sheikh FA, Barakat NAM, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med. 2009;20:821–31.

    Article  CAS  PubMed  Google Scholar 

  33. Muller J, Marchandeau F, Prelot B, Zajac J, Robin JJ, Monge S. Self-organization in water of well-defined amphiphilic poly(vinyl acetate)-b-poly(vinyl alcohol) diblock copolymers. Polym Chem. 2015;6:3063–73.

    Article  CAS  Google Scholar 

  34. Debuigne A, Caille J, Willet N, Jérôme R. Synthesis of poly(vinyl acetate) and poly(vinyl alcohol) containing block copolymers by combination of cobalt-mediated radical polymerization and ATRP. Marcromolecules. 2005;38:9488–96.

    Article  CAS  Google Scholar 

  35. Debuigne A, Willet N, Jérôme R, Detrembleur C. Amphophilic poly(vinyl acetate)-b-poly(N-vinylpyrrolidone) and novel double hydrophilic poly(vinyl alcohol)-b-poly(N-vinylpyrrolidone) block copolymers prepared by cobalt-mediated radical polymerization. Macromolecules 2007;40:7111–8.

    Article  CAS  Google Scholar 

  36. Tong YY, Dong YQ, Du FS, Li ZC. Block copolymers of poly(ethylene oxide) and poly(vinyl alcohol) synthesized by the RAFT methodology. J Polym Sci A Polym Chem. 2009;47:1901–10.

    Article  CAS  Google Scholar 

  37. Li H, Zhang YM, Xue MZ, Liu YG. Amphiphilic block copolymers of polyvinyl alcohol and polystyrene and their surface properties. Polym J. 2005;37:841–6.

    Article  CAS  Google Scholar 

  38. Mahanthappa MK, Lipscomb CE, Repollet-Pedrosa M. Poly(vinyl alcohol) -poly(vinyl ester) block copolymers. U.S. Patent No. WO2011115641A1. 2011.

  39. Burchard W. Static and dynamic light scattering from branched polymers and biopolymers. In: Light scattering from polymers. Berlin, Heidelberg: Springer; 2007.

  40. Konishi T, Yoshizaki T, Yamakawa H. On the “universal constants” ρ and Φ of flexible polymers. Macromolecules. 1991;24:5614–22.

    Article  CAS  Google Scholar 

  41. Adolphi U, Kulicke WM. Coil dimensions and conformation of macromolecules in aqueous media from flow field-flow fractionation/multi-angle laser light scattering illustrated by studies on pullulan. Polymer. 1997;38:1513–9.

    Article  CAS  Google Scholar 

  42. Akcasu AZ, Han CC. Molecular weight and temperature dependence of polymer dimensions in solution. Macromolecules. 1979;12:276–80.

    Article  CAS  Google Scholar 

  43. Topel Ö, Çakir BA, Budama L, Hoda N. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq. 2013;177:40–3.

    Article  CAS  Google Scholar 

  44. Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–44.

    Article  CAS  Google Scholar 

  45. Xu JP, Ji J, Chen WD, Shen JC. Novel biomimetic surfactant: synthesis and micellar characteristics. Macromol Biosci. 2005;5:164–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This research was partially supported by KAKENHI grants (21H02005, 21K19931, 21H05027, 21H05535) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP120203509), the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (20214044),” the International Collaborative Research Program of Institute for Chemical Research, Kyoto University (2022-121), and MEXT Promotion of Distinctive Joint Research Center Program (JPMXP 0621467946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T., Aibara, S., Omori, T. et al. Preparation of hydrophilic poly(vinyl alcohol)-containing amphiphilic diblock copolymers and their self-association in water. Polym J 55, 665–673 (2023). https://doi.org/10.1038/s41428-023-00767-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00767-8

Search

Quick links