Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy and clinical trials use a single intravenous bolus of the blood-brain-barrier penetrant scAAV9-cba-SMN by either systemic or central nervous system (CNS) delivery, resulting in impressive amelioration of the clinical phenotype but not a complete cure. The impact of scAAV9-cba-SMN treatment regimens on the CNS as well as on specific peripheral organs is yet to be described in a comparative manner. Therefore, we injected SMA mice with scAAV9-cba-SMN either intravenously (IV) for peripheral SMN restoration or intracerebroventricularly (ICV) for CNS-focused SMN restoration. In our system, ICV injections increased SMN in peripheral organs and the CNS while IV administration increased SMN in peripheral tissues only, largely omitting the CNS. Both treatments rescued several peripheral phenotypes while only ICV injections were neuroprotective. Surprisingly, both delivery routes resulted in a robust rescue effect on survival, weight, and motor function, which in IV-treated mice relied on peripheral SMN restoration but not on targeting the motor neurons. This demonstrates the independent contribution of peripheral organs to SMA pathology and suggests that treatments should not be restricted to motor neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral and spinal cord SMN levels in response to ICV and IV scAAV9-cba-SMN injection.
Fig. 2: Impact of ICV and IV scAAV9-cba-SMN injection on motor neuron degeneration in Smn2B/− mice.
Fig. 3: Impact of ICV and IV scAAV9-cba-SMN injection on neuromuscular junction pathology in Smn2B/− mice.
Fig. 4: Impact of ICV and IV scAAV9-cba-SMN on SMA-like pathophysiology.
Fig. 5: Impact of ICV and IV scAAV9-cba-SMN injection on peripheral organ defects in Smn2B/− mice.
Fig. 6: Graphical summary of the rescue of SMA-like pathology after ICV and IV scAAV9-cba-SMN injection of Smn2B/− mice.

Similar content being viewed by others

Data availability

Additional data are available from the corresponding author upon request.

References

  1. Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015;33:831–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    Article  CAS  PubMed  Google Scholar 

  3. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70:358–68.

    Article  PubMed  Google Scholar 

  4. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999;8:1177–83.

    Article  CAS  PubMed  Google Scholar 

  5. Lorson CL, Androphy EJ. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet. 2000;9:259–65.

    Article  CAS  PubMed  Google Scholar 

  6. Sumner CJ, Paushkin S, Ko C-P. Spinal muscular atrophy: disease mechanisms and therapy. Academic Press; 2016.508p.

  7. Boyer JG, Murray LM, Scott K, De Repentigny Y, Renaud J-M, Kothary R. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle. 2013;3:24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyer JG, Deguise M-O, Murray LM, Yazdani A, De Repentigny Y, Boudreau-Larivière C, et al. Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Hum Mol Genet. 2014;23:4249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bricceno KV, Martinez T, Leikina E, Duguez S, Partridge TA, Chernomordik LV, et al. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet. 2014;23:4745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudnik-Schöneborn S, Heller R, Berg C, Betzler C, Grimm T, Eggermann T, et al. Congenital heart disease is a feature of severe infantile spinal muscular atrophy. J Med Genet. 2008;45:635–8.

    Article  PubMed  Google Scholar 

  11. Shababi M, Habibi J, Yang HT, Vale SM, Sewell WA, Lorson CL. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum Mol Genet. 2010;19:4059–71.

    Article  CAS  PubMed  Google Scholar 

  12. Deguise M, Baranello G, Mastella C, Beauvais A, Michaud J, Leone A, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol. 2019;6:1519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zolkipli Z, Sherlock M, Biggar WD, Taylor G, Hutchison JS, Peliowski A, et al. Abnormal fatty acid metabolism in spinal muscular atrophy may predispose to perioperative risks. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2012;16:549–53.

    Article  Google Scholar 

  14. Bowerman M, Swoboda KJ, Michalski J-P, Wang G-S, Reeks C, Beauvais A, et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol. 2012;72:256–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis RH, Miller EA, Zhang RZ, Swoboda KJ. Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type II. J Pediatr. 2015;167:1362–.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deguise M-O, De Repentigny Y, McFall E, Auclair N, Sad S, Kothary R. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum Mol Genet. 2017;26:801–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Khairallah M-T, Astroski J, Custer SK, Androphy EJ, Franklin CL, Lorson CL. SMN deficiency negatively impacts red pulp macrophages and spleen development in mouse models of spinal muscular atrophy. Hum Mol Genet. 2017;26:932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomson AK, Somers E, Powis RA, Shorrock HK, Murphy K, Swoboda KJ, et al. Survival of motor neurone protein is required for normal postnatal development of the spleen. J Anat. 2017;230:337–46.

    Article  CAS  PubMed  Google Scholar 

  19. Gombash SE, Cowley CJ, Fitzgerald JA, Iyer CC, Fried D, McGovern VL, et al. SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice. Hum Mol Genet. 2015;24:5665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007;22:1027–49.

    Article  PubMed  Google Scholar 

  21. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011;20:681–93.

    Article  CAS  PubMed  Google Scholar 

  22. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28:271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377:1713–22.

    Article  CAS  PubMed  Google Scholar 

  24. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27:59–65.

    Article  CAS  PubMed  Google Scholar 

  25. Novartis Gene Therapies. Phase I, Open-Label, Dose Comparison Study of AVXS-101 for Sitting But Non-ambulatory Patients With Spinal Muscular Atrophy [Internet]. clinicaltrials.gov; 2021 Jun [cited 2021 Jul 22]. Report No.: NCT03381729. Available from: https://clinicaltrials.gov/ct2/show/NCT03381729.

  26. Bowerman M, Murray LM, Beauvais A, Pinheiro B, Kothary R. A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscul Disord NMD. 2012;22:263–76.

    Article  PubMed  Google Scholar 

  27. Eshraghi M, McFall E, Gibeault S, Kothary R. Effect of genetic background on the phenotype of the Smn2B/- mouse model of spinal muscular atrophy. Hum Mol Genet. 2016;25:4494–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deguise M-O, Pileggi C, De Repentigny Y, Beauvais A, Tierney A, Chehade L, et al. SMN depleted mice offer a robust and rapid onset model of nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol. 2021;12:354–.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deguise M-O, De Repentigny Y, Tierney A, Beauvais A, Michaud J, Chehade L, et al. Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine. 2020;55:102750.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murray L, Gillingwater TH, Kothary R. Dissection of the transversus abdominis muscle for whole-mount neuromuscular junction analysis. JoVE J Vis Exp. 2014;83:e51162.

    Google Scholar 

  31. Wurster CD, Steinacker P, Günther R, Koch JC, Lingor P, Uzelac Z, et al. Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen. J Neurol. 2020;267:36–44.

    Article  CAS  PubMed  Google Scholar 

  32. Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet. 2008;17:949–62.

    Article  CAS  PubMed  Google Scholar 

  33. Park G-H, Maeno-Hikichi Y, Awano T, Landmesser LT, Monani UR. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci. 2010;30:12005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478:123–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hua Y, Liu YH, Sahashi K, Rigo F, Bennett CF, Krainer AR. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev. 2015;29:288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Besse A, Astord S, Marais T, Roda M, Giroux B, Lejeune F-X, et al. AAV9-mediated expression of SMN restricted to neurons does not rescue the spinal muscular atrophy phenotype in mice. Mol Ther. 2020;28:1887–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose–response study in mice and nonhuman primates. Mol Ther. 2015;23:477–87.

    Article  CAS  PubMed  Google Scholar 

  38. Audic F, de la Banda MGG, Bernoux D, Ramirez-Garcia P, Durigneux J, Barnerias C, et al. Effects of nusinersen after one year of treatment in 123 children with SMA type 1 or 2: a French real-life observational study. Orphanet J Rare Dis. 2020;15:148.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lavie M, Diamant N, Cahal M, Sadot E, Be’er M, Fattal-Valevski A, et al. Nusinersen for spinal muscular atrophy type 1: Real-world respiratory experience. Pediatr Pulmonol. 2021;56:291–8.

    Article  PubMed  Google Scholar 

  40. Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med. 2010;2:35ra42.

    Article  PubMed  Google Scholar 

  41. Gavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, et al. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum Mol Genet. 2008;17:1063–75.

    Article  CAS  PubMed  Google Scholar 

  42. Martinez TL, Kong L, Wang X, Osborne MA, Crowder ME, Van Meerbeke JP, et al. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci Off. J Soc Neurosci. 2012;32:8703–15.

    Article  CAS  Google Scholar 

  43. Gogliotti RG, Quinlan KA, Barlow CB, Heier CR, Heckman CJ, DiDonato CJ. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci. 2012;32:3818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paez-Colasante X, Seaberg B, Martinez TL, Kong L, Sumner CJ, Rimer M. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons. PLoS ONE. 2013;8:e75866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Didonna A, Opal P. The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Mol Neurodegener. 2019;14:19.

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell. 1992;68:451–63.

    Article  PubMed  Google Scholar 

  47. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10:519–29.

    Article  CAS  PubMed  Google Scholar 

  48. Hess PL, Al‐Khalidi HR, Friedman DJ, Mulder H, Kucharska‐Newton A, Rosamond WR, et al. The metabolic syndrome and risk of sudden cardiac death: the atherosclerosis risk in communities study. J Am Heart Cardiovasc. 2017;6:e006103.

    Google Scholar 

  49. Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin LS, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ronald Booth and Adrienne Rowan from the Eastern Ontario Regional Laboratory Association at The Ottawa Hospital for assistance with some of the NfL assays. RK was supported by Muscular Dystrophy Association (USA) (grant number 575466); Muscular Dystrophy Canada; and Canadian Institutes of Health Research (CIHR) (grant number PJT-156379). AR was supported by a CNMD STAR Award from the University of Ottawa Brain and Mind Institute. MOD was supported by Frederick Banting and Charles Best CIHR Doctoral Research Award.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and R.K. designed research. A.R., M.O.D., A.B., R.Y., S.T., and D.R.T. performed experiments. B.L.S. and V.T.C. provided material support. A.R., M.O.D., and N.H. analyzed the data. A.R., N.H., and R.K. wrote the manuscript with input from all authors. R.K. designed the study.

Corresponding author

Correspondence to Rashmi Kothary.

Ethics declarations

Competing interests

R.K. received honoraria and travel accommodations from Roche as an invited speaker at their global and national board meetings in 2019. R.K. and the Ottawa Hospital Research Institute have a licensing agreement with Biogen for the Smn2B/− mouse model. MOD received honoraria and travel accommodations from Biogen for speaking engagements at the SMA Summit 2018 held in Montreal, Canada and SMA Academy 2019 held in Toronto, Canada. These COIs are outside the scope of this study. All other authors have no competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reilly, A., Deguise, MO., Beauvais, A. et al. Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Ther 29, 544–554 (2022). https://doi.org/10.1038/s41434-022-00338-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00338-1

This article is cited by

Search

Quick links