Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H+/− knock-in murine model

Abstract

Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/−-knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mouse and human rhodopsin gDNAs are expressed in P23H+/−-KI mice for up to 3 months.
Fig. 2: Delivery of mouse and human rhodopsin gDNA NPs partially rescued retinal structure in P23H+/−-KI mice for up to 3 months.
Fig. 3: Mouse and human rhodopsin gDNA delivery partially rescued retinal electroretinography responses in P23H+/−-KI mice for up to 3 months.
Fig. 4: Clustering heat map and volcano plot generated from differentially expressed miRNAs in gRho-NP-treated P23H+/−-KI mice at PI-3 months.
Fig. 5: Clustering Heat map and volcano plot generated from differentially expressed miRNAs in human gRHO NP delivery in P23H+/−-KI mice at PI-3 months.
Fig. 6: Venn diagram generated from differentially expressed miRNAs in mouse and human gDNA NP delivery in P23H+/−-KI mice at PI-3 months.
Fig. 7: ELISA analysis of TNF-α and IL-6 expression levels after mouse and human gDNA NP delivery in P23H+/−-KI mice at one week and 6 weeks.

Similar content being viewed by others

Data availability

The raw sequencing reads of all libraries (GSE153053) are publicly available online at the Gene Expression Omnibus (GEO). Datasets can be downloaded.

References

  1. Phelan JK, Bok D. A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis. 2000;6:116–24.

    CAS  PubMed  Google Scholar 

  2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. The Lancet. 2006;368:1795–809.

    Article  CAS  Google Scholar 

  3. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014;5:a017111.

    Article  PubMed  Google Scholar 

  5. Ayuso C, Millan JM. Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med. 2010;2:34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sudharsan R, Beltran WA. Progress in gene therapy for rhodopsin autosomal dominant retinitis pigmentosa. Retinal Degenerative Diseases: Springer; 2019. p. 113–8.

  7. Palczewski K. G protein–coupled receptor rhodopsin. Annu Rev Biochem. 2006;75:743–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filipek S, Stenkamp RE, Teller DC, Palczewski K. G protein-coupled receptor rhodopsin: a prospectus. Ann Rev Physiol. 2003;65:851–79.

    Article  CAS  Google Scholar 

  9. Hargrave PA. Rhodopsin structure, function, and topography the Friedenwald lecture. Investig Ophthalmol Visual Sci. 2001;42:3–9.

    CAS  Google Scholar 

  10. Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retinal Eye Res. 2018;62:1–23.

    Article  CAS  Google Scholar 

  11. Sung C-H, Schneider BG, Agarwal N, Papermaster DS, Nathans J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci. 1991;88:8840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaushal S, Khorana HG. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry. 1994;33:6121–8.

    Article  CAS  PubMed  Google Scholar 

  13. Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci. 2010;107:5961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saliba RS, Munro PM, Luthert PJ, Cheetham ME. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci. 2002;115:2907–18.

    Article  CAS  PubMed  Google Scholar 

  15. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318:944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Illing ME, Rajan RS, Bence NF, Kopito RR. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem. 2002;277:34150–60.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, et al. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem. 2014;289:9288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dryja TP, McGee TL, Hahn LB, Cowley GS, Olsson JE, Reichel E, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 1990;323:1302–7.

    Article  CAS  PubMed  Google Scholar 

  19. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343:364–6.

    Article  CAS  PubMed  Google Scholar 

  20. Chiang W-C, Kroeger H, Sakami S, Messah C, Yasumura D, Matthes MT, et al. Robust endoplasmic reticulum-associated degradation of rhodopsin precedes retinal degeneration. Mol Neurobiol. 2015;52:679–95.

    Article  CAS  PubMed  Google Scholar 

  21. Athanasiou D, Kosmaoglou M, Kanuga N, Novoselov SS, Paton AW, Paton JC, et al. BiP prevents rod opsin aggregation. Mol Biol Cell. 2012;23:3522–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Athanasiou D, Bevilacqua D, Aguila M, McCulley C, Kanuga N, Iwawaki T, et al. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Human Mol Genet. 2014;23:6594–606.

    Article  Google Scholar 

  23. Rajan RS, Kopito RR. Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J Biol Chem. 2005;280:1284–91.

    Article  CAS  PubMed  Google Scholar 

  24. Haeri M, Knox BE. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. PLoS One. 2012;7:e30101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem. 2011;286:10551–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewin AS, Rossmiller B, Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb Perspect Med. 2014;4:a017400.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mao H, Gorbatyuk MS, Rossmiller B, Hauswirth WW, Lewin AS. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Human Gene Ther. 2012;23:356–66.

    Article  CAS  Google Scholar 

  28. Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS, et al. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Human Gene Ther. 2011;22:567–75.

    Article  CAS  Google Scholar 

  29. Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci. 2018;115:E8547–E56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chadderton N, Millington-Ward S, Palfi A, O’Reilly M, Tuohy G, Humphries MM, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther. 2009;17:593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farrar G, Millington-Ward S, Chadderton N, Humphries P, Kenna P. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 2012;19:137–44.

    Article  CAS  PubMed  Google Scholar 

  32. Millington-Ward S, Chadderton N, O’reilly M, Palfi A, Goldmann T, Kilty C, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19:642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet. 2007;81:127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vision. 2012;18:2479.

    CAS  Google Scholar 

  35. Greenwald DL, Cashman SM, Kumar-Singh R. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Gene Ther. 2013;20:425–34.

    Article  CAS  PubMed  Google Scholar 

  36. Hernan I, Gamundi MJ, Borràs E, Maseras M, García-Sandoval B, Blanco-Kelly F, et al. Novel p.M96T variant of NRL and shRNA-based suppression and replacement of NRL mutants associated with autosomal dominant retinitis pigmentosa. Clin Genet. 2012;82:446–52.

    Article  CAS  PubMed  Google Scholar 

  37. Sudharsan R, Beltran WA. Progress in gene therapy for rhodopsin autosomal dominant retinitis pigmentosa. Adv Exp Med Biol. 2019;1185:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Orlans HO, Barnard AR, Patrício MI, McClements ME, MacLaren RE. Effect of AAV-mediated rhodopsin gene augmentation on retinal degeneration caused by the dominant P23H rhodopsin mutation in a knock-in murine model. Human Gene Ther. 2020;31:730–42.

    Article  CAS  Google Scholar 

  39. Wen X-H, Shen L, Brush RS, Michaud N, Al-Ubaidi MR, Gurevich VV, et al. Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors. Biophys J. 2009;96:939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, et al. The relationship between opsin overexpression and photoreceptor degeneration. Investig Ophthalmol Visual Sci. 2001;42:589–600.

    CAS  Google Scholar 

  41. Jaenisch R. Transgenic animals. Science. 1988;240:1468–74.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng M, Mitra RN, Filonov NA, Han Z. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. The. FASEB J. 2016;30:1076–86.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng M, Mitra RN, Weiss ER, Han Z. Rhodopsin genomic loci DNA nanoparticles improve expression and rescue of retinal degeneration in a model for retinitis pigmentosa. Mol Ther. 2020;28:523–35.

    Article  CAS  PubMed  Google Scholar 

  44. Laner A, Goussard S, Ramalho A, Schwarz T, Amaral M, Courvalin P, et al. Bacterial transfer of large functional genomic DNA into human cells. Gene Ther. 2005;12:1559–72.

    Article  CAS  PubMed  Google Scholar 

  45. Han Z, Banworth MJ, Makkia R, Conley SM, Al-Ubaidi MR, Cooper MJ, et al. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. The. FASEB J. 2015;29:2535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci. 1991;88:478–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu C. Strategies for designing transgenic DNA constructs. Methods Mol Biol. 2013;1027:183–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alexander MR, Wheatley AK, Center RJ, Purcell DF. Efficient transcription through an intron requires the binding of an Sm-type U1 snRNP with intact stem loop II to the splice donor. Nucleic Acids Res. 2010;38:3041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA. 1988;85:836–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu L, Wang H, Xia X, Zhou H, Xu Z. A construct with fluorescent indicators for conditional expression of miRNA. BMC Biotechnol. 2008;8:77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garrick D, Fiering S, Martin DI, Whitelaw E. Repeat-induced gene silencing in mammals. Nat Genet. 1998;18:56–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lau S, Jardine K, McBurney MW. DNA methylation pattern of a tandemly repeated LacZ transgene indicates that most copies are silent. Developmental Dynamics: Official Publication of the American Association of Anatomists. 1999;215:126–38.

    Article  CAS  Google Scholar 

  53. Simna SP, Han Z. Prospects of non-coding elements in genomic dna based gene therapy. Curr Gene Ther. 2021;22:89–103.

  54. Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996;86:71–82.

    Article  CAS  PubMed  Google Scholar 

  55. Gibson TJ, Seiler M, Veitia RA. The transience of transient overexpression. Nat Methods. 2013;10:715–21.

    Article  CAS  PubMed  Google Scholar 

  56. Han Z, Banworth MJ, Makkia R, Conley SM, Al‐Ubaidi MR, Cooper MJ, et al. Genomic DNA nanoparticles rescue rhodopsin‐associated retinitis pigmentosa phenotype. FASEB J. 2015;29:2535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Investig. 2012;122:3221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenbaum JT, Woods A, Kezic J, Planck SR, Rosenzweig HL. Contrasting ocular effects of local versus systemic endotoxin. Invest Ophthalmol Vis Sci. 2011;52:6472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mendes HF, Cheetham ME. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Human Mol Genet. 2008;17:3043–54.

    Article  CAS  Google Scholar 

  60. Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin and implications for gene therapy. Mol Neurobiol. 2003;28:149–58.

    Article  CAS  PubMed  Google Scholar 

  61. Price BA, Sandoval IM, Chan F, Nichols R, Roman-Sanchez R, Wensel TG, et al. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. PLoS One. 2012;7:e49889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitra RN, Zheng M, Weiss ER, Han Z. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials. 2018;157:26–39.

    Article  CAS  PubMed  Google Scholar 

  63. Ziady AG, Gedeon CR, Muhammad O, Stillwell V, Oette SM, Fink TL, et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol Ther. 2003;8:948–56.

    Article  CAS  PubMed  Google Scholar 

  64. Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, et al. Long-term Transgene Expression in the Central Nervous System Using DNA Nanoparticles. Mol Ther. 2009;17:641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One. 2012;7:e52189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One. 2009;4:e7410.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim AJ, Boylan NJ, Suk JS, Lai SK, Hanes J. Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. J Control Release. 2012;158:102–7.

    Article  CAS  PubMed  Google Scholar 

  68. Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther. 2004;15:1255–69.

    Article  CAS  PubMed  Google Scholar 

  69. McNally N, Kenna P, Humphries MM, Hobson AH, Khan NW, Bush RA, et al. Structural and Functional Rescue of Murine Rod Photoreceptors by Human Rhodopsin Transgene. Human Mol Genet. 1999;8:1309–12.

    Article  CAS  Google Scholar 

  70. Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol. 2005;6:127–38.

    Article  CAS  PubMed  Google Scholar 

  71. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

    Article  CAS  PubMed  Google Scholar 

  73. Sundermeier TR, Zhang N, Vinberg F, Mustafi D, Kohno H, Golczak M, et al. DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB J. 2014;28:3780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, et al. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics. 2010;11:715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smit-McBride Z, Forward KI, Nguyen AT, Bordbari MH, Oltjen SL, Hjelmeland LM. Age-dependent increase in miRNA-34a expression in the posterior pole of the mouse eye. Mol Vision. 2014;20:1569.

    CAS  Google Scholar 

  76. Forward KI, Smit-McBride Z, Nguyen A, Bordbari M, Hjelmeland LM. Differential Age-related Expression of MicroRNA-34a in Mouse Retina and RPE. Investig Ophthalmol Visual Sci. 2014;55:4517.

    Google Scholar 

  77. Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One. 2016;11:e0150211.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tong N, Jin R, Zhou Z, Wu X. Involvement of microRNA-34a in age-related susceptibility to oxidative stress in ARPE-19 cells by targeting the silent mating type information regulation 2 homolog 1/p66shc pathway: Implications for age-related macular degeneration. Front Aging Neurosci. 2019;11:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi S, Jin Y, Song H, Chen X. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1. Biochem Cell Biol. 2019;97:423–30.

    Article  CAS  PubMed  Google Scholar 

  80. Momen-Heravi F, Bala S. The miRNA and Extracellular Vesicles in Alcoholic Liver Disease. Molecular Aspects of Alcohol and Nutrition: Elsevier; 2016. p. 275–86.

  81. Zhao Y, Jaber VR, LeBeauf A, Sharfman NM, Lukiw WJ. microRNA-34a (miRNA-34a) mediated Down-regulation of the post-synaptic cytoskeletal element SHANK3 in sporadic Alzheimer’s disease (AD). Front Neurol. 2019;10:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hidalgo-Sastre A, Lubeseder-Martellato C, Engleitner T, Steiger K, Zhong S, Desztics J, et al. Mir34a constrains pancreatic carcinogenesis. Scientific Rep. 2020;10:1–12.

    Google Scholar 

  83. Hou Q, Zhou L, Tang J, Ma N, Xu A, Tang J, et al. LGR4 is a direct target of microRNA-34a and modulates the proliferation and migration of retinal pigment epithelial ARPE-19 cells. PloS one. 2016;11:e0168320.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu M, Li D, Yang C, Ji J-S. MicroRNA-34a inhibition of the TLR signaling pathway via CXCL10 suppresses breast cancer cell invasion and migration. Cell Physiol Biochem. 2018;46:1286–304.

    Article  CAS  PubMed  Google Scholar 

  85. MacDonagh L, Gray S, Gallagher M, French B, Gasch C, Finn S, et al. Is miR-34a the micromanager of cancer stemness and resistance in NSCLC? Lung Cancer. 2018;115:S1–S.

    Google Scholar 

  86. Yin W, Gao F, Zhang S. MicroRNA‑34a inhibits the proliferation and promotes the chemosensitivity of retinoblastoma cells by downregulating Notch1 expression. Mol Med Rep. 2020;22:1613–20.

    Article  CAS  PubMed  Google Scholar 

  87. Liu F, Zhang Q, Liang Y. MicroRNA‐598 acts as an inhibitor in retinoblastoma through targeting E2F1 and regulating AKT pathway. J Cell Biochem. 2020;121:2294–302.

    Article  CAS  PubMed  Google Scholar 

  88. Xing F, Wang S, Zhou J. The expression of microRNA-598 inhibits ovarian cancer cell proliferation and metastasis by targeting URI. Mol Ther-Oncolytics. 2019;12:9–15.

    Article  CAS  PubMed  Google Scholar 

  89. Tong X, Su P, Yang H, Chi F, Shen L, Feng X, et al. MicroRNA‑598 inhibits the proliferation and invasion of non‑small cell lung cancer cells by directly targeting ZEB2. Exp Ther Med. 2018;16:5417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang N, Zhang Y, Liang H. MicroRNA-598 inhibits cell proliferation and invasion of glioblastoma by directly targeting metastasis associated in colon cancer-1 (MACC1). Oncol Res Featuring Preclin Clin Cancer Therapeutics. 2018;26:1275–83.

    Article  Google Scholar 

  91. Sangalli E, Tagliabue E, Sala LL, Prattichizzo F, Uccellatore A, Spada D, et al. Circulating MicroRNA-15a Associates With Retinal Damage in Patients With Early Stage Type 2 Diabetes. Front Endocrinol. 2020;11:254.

    Article  Google Scholar 

  92. Ye E-A, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S, et al. miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflamm. 2016;13:1–9.

    Article  Google Scholar 

  93. Wang Q, Navitskaya S, Chakravarthy H, Huang C, Kady N, Lydic TA, et al. Dual anti-inflammatory and anti-angiogenic action of miR-15a in diabetic retinopathy. EBioMedicine. 2016;11:138–50.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ye E-A, Liu L, Steinle JJ. miR-15a/16 inhibits TGF-beta3/VEGF signaling and increases retinal endothelial cell barrier proteins. Vision Res. 2017;139:23–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gong Q, Li F, Su G. Upregulated VEGF and Robo4 correlate with the reduction of miR-15a in the development of diabetic retinopathy. Endocrine. 2019;65:35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahmad AA, Crockett E, Wang Q, Busik JV. The role of miRNA-15a in the regulation of VEGF and angiogenesis pathway in diabetic retinopathy. Investigative Ophthalmol Visual Sci. 2015;56:2310.

    Google Scholar 

  97. Curtiss E, Liu L, Steinle JJ. miR15a regulates NLRP3 inflammasome proteins in the retinal vasculature. Experimental Eye Res. 2018;176:98–102.

    Article  CAS  Google Scholar 

  98. Zhang X, Lu Y, Wang J, He N. Overexpression of Brg1 alleviates high glucose-induced retinal ganglion cell apoptosis though regulating Notch/Hes1 signaling. Biochem Biophys Res Commun. 2019;514:1160–6.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Yang Y, Feng Z. Suppression of microRNA-495 alleviates high-glucose-induced retinal ganglion cell apoptosis by regulating Notch/PTEN/Akt signaling. Biomed Pharmacother. 2018;106:923–9.

    Article  CAS  PubMed  Google Scholar 

  100. Chen S-M, Chen H-C, Chen S-J, Huang C-Y, Chen P-Y, Wu T-WE, et al. MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6. World J Surg Oncol. 2013;11:1–8.

    Article  Google Scholar 

  101. Yang D-W, Qian G-B, Jiang M-J, Wang P, Wang K-Z. Inhibition of microRNA-495 suppresses chondrocyte apoptosis through activation of the NF-κB signaling pathway by regulating CCL4 in osteoarthritis. Gene Ther. 2019;26:217–29.

    Article  CAS  PubMed  Google Scholar 

  102. Cao M, Nie W, Li J, Zhang Y, Yan X, Guan X, et al. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A. Protein Cell. 2014;5:862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou T, Xiang D-K, Li S-N, Yang L-H, Gao L-F, Feng C. MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 inflammasome signaling pathway. Cell Physio Biochem. 2018;49:798–815.

    Article  CAS  Google Scholar 

  104. Liu D, Zhang X-L, Yan C-H, Li Y, Tian X-X, Zhu N, et al. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thrombosis Res. 2015;135:146–54.

    Article  CAS  Google Scholar 

  105. Xu Y-Y, Tian J, Hao Q, Yin L-R. MicroRNA-495 downregulates FOXC1 expression to suppress cell growth and migration in endometrial cancer. Tumor Biol. 2016;37:239–51.

    Article  CAS  Google Scholar 

  106. Tan M, Mu X, Liu Z, Tao L, Wang J, Ge J, et al. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog. Biochem Biophys Res Commun. 2017;483:867–73.

    Article  CAS  PubMed  Google Scholar 

  107. Sun J, Qiao Y, Song T, Wang H. MiR‑495 suppresses cell proliferation by directly targeting HMGA2 in lung cancer. Mol Med Rep. 2019;19:1463–70.

    CAS  PubMed  Google Scholar 

  108. Wang Q, Bozack SN, Yan Y, Boulton ME, Grant MB, Busik JV. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Investig Ophthalmol Vis Sci. 2014;55:3986–94.

    Article  CAS  Google Scholar 

  109. Nahid MA, Satoh M, Chan EK. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immun. 2011;186:1723–34.

    Article  CAS  PubMed  Google Scholar 

  110. Li L, Chen XP, Li YJ. MicroRNA‐146a and human disease. Scandinavian J Immunol. 2010;71:227–31.

    Article  CAS  Google Scholar 

  111. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180:5689–98.

    Article  CAS  PubMed  Google Scholar 

  112. Anasagasti A, Ezquerra-Inchausti M, Barandika O, Munoz-Culla M, Caffarel MM, Otaegui D, et al. Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Investig Ophthalmol Visual Sci. 2018;59:2381–92.

    Article  CAS  Google Scholar 

  113. Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: Systematic review and bioinformatic analysis. Endocr Connections. 2017;6:773–90.

    Article  CAS  Google Scholar 

  114. Wohl SG, Hooper MJ, Reh TA. MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of Müller glia in mice. Development. 2019;146:dev179556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu Y, Chen Y, Wang Y, Zhang X, Gao K, Chen S, et al. MicroRNA profiling in glaucoma eyes with varying degrees of optic neuropathy by using next-generation sequencing. Investig Ophthalmol Visual Science. 2018;59:2955–66.

    Article  CAS  Google Scholar 

  116. Helal HG, Rashed MH, Abdullah OA, Salem TI, Daifalla A. MicroRNAs (−146a, −21 and −34a) are diagnostic and prognostic biomarkers for diabetic retinopathy. Biomed J. 2020;44:S242–S251.

  117. Wei Y, Li N, Zhao L, Yang C, Ma B, Li X, et al. MicroRNAs and autoimmune-mediated eye diseases. Front Cell Developmental Biol. 2020;8:818.

  118. Ye E-A, Steinle JJ. Regulatory role of microRNA on inflammatory responses of diabetic retinopathy. Neural Regeneration Res. 2017;12:580.

    Article  CAS  Google Scholar 

  119. Baik B, Yoon S, Nam D. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. PloS one. 2020;15:e0232271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mitra RN, Nichols CA, Guo J, Makkia R, Cooper MJ, Naash MI, et al. Nanoparticle-mediated miR200-b delivery for the treatment of diabetic retinopathy. J Controlled Release. 2016;236:31–7.

    Article  CAS  Google Scholar 

  121. Liu G, Li D, Pasumarthy MK, Kowalczyk TH, Gedeon CR, Hyatt SL, et al. Nanoparticles of compacted DNA transfect postmitotic cells. J Biol Chem. 2003;278:32578–86.

    Article  CAS  PubMed  Google Scholar 

  122. Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, et al. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron. 1992;9:815–30.

    Article  CAS  PubMed  Google Scholar 

  123. Al-Ubaidi M, Pittler S, Champagne MS, Triantafyllos JT, McGinnis J, Baehr W. Mouse opsin. Gene structure and molecular basis of multiple transcripts. J Biol Chem. 1990;265:20563–9.

    Article  CAS  PubMed  Google Scholar 

  124. Han Z, Guo J, Conley SM, Naash MI. Retinal angiogenesis in the Ins2Akita mouse model of diabetic retinopathy. Investig Ophthalmol Visual Sci. 2013;54:574–84.

    Article  CAS  Google Scholar 

  125. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc. 2013;8:1765–86.

    Article  PubMed  Google Scholar 

  126. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Anders S, Huber W. Differential expression analysis for sequence count data. Nat Prec. 2010;11:R106.

  128. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  129. Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2009;4:44–57.

    Article  PubMed  Google Scholar 

  130. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hemant Kelkar (Department of Genetics) for his critical comments and scientific guidance. This work was supported by the U.S. National Eye Institute (R01EY026564, ZH; R01EY012224, ERW), and in part by Pfizer-NC Biotech Gene Therapy Fellowship Program for Dr. Kai Wang (NCBC Grant #2020-GTF-6902, ZH); the Bright Focus Foundation (M2019063, ZH), and the Edward N. & Della L. Thome Memorial Foundation (138289, ZH).

Author information

Authors and Affiliations

Authors

Contributions

SSP, RNM, and ZH designed the project. SSP, ERW, and ZH wrote the manuscript. SSP, RNM, MZ, KW, and YK conducted the experiments. JDC and ERW provided support for the ERG study. ERW and ZH edited and reviewed the manuscript. ZH supervised the project. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Zongchao Han.

Ethics declarations

competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SP, S., Mitra, R.N., Zheng, M. et al. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H+/− knock-in murine model. Gene Ther 30, 628–640 (2023). https://doi.org/10.1038/s41434-023-00394-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00394-1

Search

Quick links