Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for the volatile-rich composition of a 1.5-Earth-radius planet

Subjects

Abstract

The population of planets smaller than approximately 1.7 Earth radii (R) is widely interpreted as consisting of rocky worlds, generally referred to as super-Earths. This picture is largely corroborated by radial velocity mass measurements for close-in super-Earths but lacks constraints at lower insolations. Here we present the results of a detailed study of the Kepler-138 system using 13 Hubble and Spitzer transit observations of the warm-temperate 1.51 ± 0.04 R planet Kepler-138 d (\({T}_{\rm{eq,A_{\rm{B}} = 0.3}}\approx 350\,{\mathrm{K}}\)) combined with new radial velocity measurements of its host star obtained with the Keck/High Resolution Echelle Spectrometer. We find evidence for a volatile-rich ‘water world’ nature of Kepler-138 d, with a large fraction of its mass $M_{\rm{d}}$ contained in a thick volatile layer. This finding is independently supported by transit timing variations and radial velocity observations (\({M}_{{{{\rm{d}}}}}=2.{1}_{-0.7}^{+0.6}\,{M}_{\oplus }\)), as well as the flat optical/infrared transmission spectrum. Quantitatively, we infer a composition of \(1{1}_{-4}^{+3}\%\) volatiles by mass or ~51% by volume, with a 2,000-km-deep water mantle and atmosphere on top of a core with an Earth-like silicates/iron ratio. Any hypothetical hydrogen layer consistent with the observations (<0.003 M) would have swiftly been lost on a ~10 Myr timescale. The bulk composition of Kepler-138 d therefore resembles those of the icy moons, rather than the terrestrial planets, in the Solar System. We conclude that not all super-Earths are rocky worlds, but that volatile-rich water worlds exist in an overlapping size regime, especially at lower insolations. Finally, our photodynamical analysis also reveals that Kepler-138 c (with a Rc = 1.51 ± 0.04 R and a \({M}_{{{{\rm{c}}}}}=2.{3}_{-0.5}^{+0.6}\,{M}_{\oplus }\)) is a slightly warmer twin of Kepler-138 d (that is, another water world in the same system) and we infer the presence of Kepler-138 e, a likely non-transiting planet at the inner edge of the habitable zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Results from the four-planet photodynamical analysis of the HST, Spitzer and Kepler light curves of Kepler-138.
Fig. 2: Comparison of Kepler-138 c and d with the population of super-Earths.
Fig. 3: Low density of Kepler-138 c and d compared with rocky compositions.
Fig. 4: Planet structure modelling results for Kepler-138 d.

Similar content being viewed by others

Data availability

The data used in this paper are deposited on publicly available servers. The data from the HST used in this work can be downloaded from the MAST at https://archive.stsci.edu/proposal_search.php?mission=hst&id=13665. The data from the Spitzer Space Telescope included in our analysis is available on the SHA at https://sha.ipac.caltech.edu/applications/Spitzer/SHA/#id=SearchByProgram&RequestClass=ServerRequest&DoSearch=true&SearchByProgram.field.program=11131&MoreOptions.field.prodtype=aor,pbcd&shortDesc=Program&isBookmarkAble=true&isDrillDownRoot=true&isSearchResult=true. The Keck/HIRES radial velocities are available online as Supplementary Dataset 1. The planet population plots used data from the public NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu/), which also hosts an interface where the Kepler photometry can be downloaded.

Code availability

The smint code is publicly available via GitHub at https://github.com/cpiaulet/smint. The RV analysis is based on the publicly available packages george, RadVel and emcee. Further scripts can be provided by the corresponding author upon reasonable request.

References

  1. Rowe, J. F. et al. Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. Astrophys. J. 784, 45 (2014).

    Article  ADS  Google Scholar 

  2. Kipping, D. M. et al. The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs. Astrophys. J. 784, 28 (2014).

    Article  ADS  Google Scholar 

  3. Jontof-Hutter, D., Rowe, J. F., Lissauer, J. J., Fabrycky, D. C. & Ford, E. B. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 522, 321–323 (2015).

  4. Almenara, J. M., Díaz, R. F., Dorn, C., Bonfils, X. & Udry, S. Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138. Mon. Not. R. Astron. Soc. 478, 460–486 (2018).

  5. Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467 (2010).

    Article  ADS  Google Scholar 

  6. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article  ADS  Google Scholar 

  7. Kubyshkina, D. et al. Grid of upper atmosphere models for 1–40 M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151 (2018).

  8. Lammer, H. et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  ADS  Google Scholar 

  9. Dong, C., Jin, M. & Lingam, M. Atmospheric Escape From TOI-700 d: Venus versus Earth Analogs. Astrophys. J. Lett. 896, L24 (2020).

  10. Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H. & Prokopov, P. A. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; structuring of inner magnetosphere. Astrophys. J. 813, 50 (2015).

    Article  ADS  Google Scholar 

  11. Kite, E. S. & Barnett, M. N. Exoplanet secondary atmosphere loss and revival. Proceedings of the National Academy of Science 117, 18264–18271 (2020)

  12. Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of Water in Terrestrial Magma Oceans and Carbon-rich Early Atmospheres. The Planetary Science Journal 3, 93 (2022)

  13. Aguichine A., Mousis O., Deleuil M., Marcq E., Mass-Radius Relationships for Irradiated Ocean Planets. Astrophys. J. 914, 84 (2021).

  14. Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J. 161, 70 (2021).

    Article  ADS  Google Scholar 

  15. Bower, D. J. et al. Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations. Astron. Astrophys. 631, A103 (2019).

    Article  Google Scholar 

  16. Kite, E. S., Fegley B. Jr, Schaefer, L. & Ford, E. Atmosphere origins for exoplanet sub-Neptunes. Preprint at https://arxiv.org/abs/2001.09269 (2020).

  17. Dorn, C. & Lichtenberg, T. Hidden Water in Magma Ocean Exoplanets. Astrophys. J. 922, no. 1, (2021).

  18. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    Article  ADS  Google Scholar 

  19. Lopez, E. D. Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. Mon. Not. R. Astron. Soc. 472, 245–253 (2017).

    Article  ADS  Google Scholar 

  20. Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. 909, L22 (2021).

    Article  ADS  Google Scholar 

  21. Kuchner, M. J. Volatile-rich Earth-mass planets in the habitable zone. Astrophys. J. Lett. 596, L105–L108 (2003).

    Article  ADS  Google Scholar 

  22. Huang, S. & Ormel, C. W. The dynamics of the TRAPPIST-1 system in the context of its formation. Mon. Not. R. Astron. Soc. 511, no. 3, 3814–3831 (2022).

  23. Elkins-Tanton, L. T. & Seager, S. Ranges of atmospheric mass and composition of super-Earth exoplanets. Astrophys. J. 685, 1237–1246 (2008).

    Article  ADS  Google Scholar 

  24. Luger, R. et al. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15, 57–88 (2015).

    Article  ADS  Google Scholar 

  25. Weiss, L. M. & Marcy, G. W. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. Lett. 783, L6 (2014).

    Article  ADS  Google Scholar 

  26. Lundkvist, M. S. et al. Hot super-Earths stripped by their host stars. Nat. Commun. 7, 11201 (2016).

    Article  ADS  Google Scholar 

  27. Otegi, J. F., Bouchy, F. & Helled, R. Revisited mass-radius relations for exoplanets below 120 M. Astron. Astrophys. 634, A43 (2020).

    Article  ADS  Google Scholar 

  28. Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).

    Article  ADS  Google Scholar 

  29. Lee, E. J. & Chiang, E. Breeding super-Earths and birthing super-puffs in transitional disks. Astrophys. J. 817, 90 (2016).

    Article  ADS  Google Scholar 

  30. Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    Article  ADS  Google Scholar 

  31. Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    Article  ADS  Google Scholar 

  32. Mills, S. M. & Mazeh, T. The planetary mass-radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. Astrophys. J. 839, L8 (2017).

    Article  ADS  Google Scholar 

  33. Bitsch, B., Raymond, S. N. & Izidoro, A. Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astron. Astrophys. 624, A109 (2019).

    Article  ADS  Google Scholar 

  34. Parviainen, H. & Aigrain, S. LDTK: limb darkening toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).

    Article  ADS  Google Scholar 

  35. Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article  ADS  Google Scholar 

  36. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. Emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

  37. Deck, K. M., Agol, E., Holman, M. J. & Nesvorný, D. TTVFast: An efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014).

    Article  ADS  Google Scholar 

  38. Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    Article  ADS  Google Scholar 

  39. Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).

    Article  ADS  Google Scholar 

  40. Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article  ADS  Google Scholar 

  41. Shaw, J. R., Bridges, M. & Hobson, M. P. Efficient Bayesian inference for multimodal problems in cosmology. M. Not. R. Astron. Soc. 378, 1365–1370 (2007).

    Article  ADS  Google Scholar 

  42. Mukherjee, P., Parkinson, D. & Liddle, A. R. A nested sampling algorithm for cosmological model selection. Astrophys. J. 638, L51–L54 (2006).

    Article  ADS  Google Scholar 

  43. Skilling, J. Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2004 (eds Fischer, R., Dose, V., Preuss, R. & von Toussaint, U.) 395–405 (AIP, 2004).

  44. Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article  ADS  Google Scholar 

  45. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 252 (2015).

  46. Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron., 3, 813–821 (2019).

  47. Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019).

    Article  ADS  Google Scholar 

  48. Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    Article  ADS  Google Scholar 

  49. Tsiaras, A. et al. A new approach to analyzing HST spatial scans: the transmission spectrum of HD 209458 b. Astrophys. J. 832, 202 (2016).

    Article  ADS  Google Scholar 

  50. Grillmair, C. J. et al. Pointing effects and their consequences for Spitzer IRAC exoplanet observations. Observatory Operations: Strategies, Processes, and Systems IV, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Peck, A. B., Seaman, R., L. & Comeron, F.) vol. 8448, 84481I (2012).

  51. Benneke, B. et al. Spitzer observations confirm and rescue the habitable-zone super-Earth K2-18b for future characterization. Astrophys. J. 834, 187 (2017).

    Article  ADS  Google Scholar 

  52. Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler. Astron. Astrophys. 510, A21 (2010).

    Article  ADS  Google Scholar 

  53. Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    Article  ADS  Google Scholar 

  54. Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).

    Article  ADS  Google Scholar 

  55. Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015).

    Article  ADS  Google Scholar 

  56. Stevenson, K. B. et al. Transit and eclipse analyses of the exoplanet HD 149026b using bliss mapping. Astrophys. J. 754, 136 (2012).

    Article  ADS  Google Scholar 

  57. Ragozzine, D. & Holman, M. J. The value of systems with multiple transiting planets. Preprint at https://arxiv.org/abs/1006.3727 (2010).

  58. Agol, E. et al. Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. The Planetary Science Journal 2, no. 1 (2021).

  59. Jontof-Hutter, D. et al. Following Up the Kepler Field: Masses of Targets for Transit Timing and Atmospheric Characterization. Astron. J. 161, 246.

  60. Ford, E. B. Improving the efficiency of Markov chain Monte Carlo for analyzing the orbits of extrasolar planets. Astrophys. J. 642, 505–522 (2006).

    Article  ADS  Google Scholar 

  61. Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    Article  ADS  Google Scholar 

  62. Mann, A. W. et al. How to constrain your M dwarf. II. The mass-luminosity-metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    Article  ADS  Google Scholar 

  63. Berger, T. A. et al. The Gaia-Kepler Stellar Properties Catalog. I. Homogeneous Fundamental Properties for 186,301 Kepler Stars. Astron. J. 159, 280 (2020).

  64. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  65. Nelson, B. E., Ford, E. B. & Payne, M. J. RUN DMC: an efficient, parallel code for analyzing radial velocity observations using N-body integrations and differential evolution Markov chain Monte Carlo. Astrophys. J. Suppl. Ser. 210, 11 (2013).

    Article  ADS  Google Scholar 

  66. Heyl, J. S. & Gladman, B. J. Using long-term transit timing to detect terrestrial planets. Mon. Not. R. Astron. Soc. 377, 1511–1519 (2007).

    Article  ADS  Google Scholar 

  67. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  68. Wang, J., Fischer, D. A., Xie, J.-W. & Ciardi, D. R. Influence of stellar multiplicity on planet formation. IV. Adaptive optics imaging of Kepler stars with multiple transiting planet candidates. Astrophys. J. 813, 130 (2015).

    Article  ADS  Google Scholar 

  69. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope. In Instrumentation in Astronomy VIII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Crawford, D. L. & Craine, E. R.) vol. 2198, 362 (1994).

  70. Butler, R. P. et al. Attaining Doppler precision of 3 m s-1. Publ. Astron. Soc. Pac. 108, 500 (1996).

    Article  ADS  Google Scholar 

  71. Amado, P. J. et al. The CARMENES search for exoplanets around M dwarfs. Two terrestrial planets orbiting G 264-012 and one terrestrial planet orbiting Gl 393. Astron. Astrophys. 650, A188 (2021).

  72. Ahrer, E. et al. The HARPS search for southern extra-solar planets - XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling’s impact on planet detection. Mon. Not. R. Astron. Soc. 503, 1248–1263 (2021).

  73. McQuillan, A., Aigrain, S. & Mazeh, T. Measuring the rotation period distribution of field M dwarfs with Kepler. Mon. Not. R. Astron. Soc. 432, 1203–1216 (2013).

    Article  ADS  Google Scholar 

  74. McQuillan, A., Mazeh, T. & Aigrain, S. Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. Astrophys. J. Lett. 775, L11 (2013).

    Article  ADS  Google Scholar 

  75. Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).

  76. Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article  ADS  Google Scholar 

  77. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  78. Tange, O. GNU parallel 20200722 (’privacy shield’). Zenodo https://doi.org/10.5281/zenodo.3956817 (2020).

  79. Jeffreys, H. Theory of Probability. 3rd Edition, Oxford University Press, London, 95–103 (1961).

  80. Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).

    Article  ADS  Google Scholar 

  81. Miller-Ricci, E., Seager, S. & Sasselov, D. The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009).

    Article  ADS  Google Scholar 

  82. Thorngren, D. P., Gao, P. & Fortney, J. J. The Intrinsic Temperature and Radiative-Convective Boundary Depth in the Atmospheres of Hot Jupiters. Astrophys. J. 884, L6 (2019).

  83. Chabrier, G., Mazevet, S. & Soubiran, F. A new equation of state for dense hydrogen-helium mixtures. Astrophys. J. 872, 51 (2019).

    Article  ADS  Google Scholar 

  84. Thompson, S. L. 1990, ANEOS—Analytic Equations of State for Shock Physics Codes, Sandia Natl. Lab. Doc. SAND89–2951 (http://prod.sandia.gov/techlib/access-control.cgi/1989/892951.pdf).

  85. Mazevet, S., Licari, A., Chabrier, G. & Potekhin, A. Y. Ab initio based equation of state of dense water for planetary and exoplanetary modeling. Astron. Astrophys. 621, A128 (2019).

    Article  ADS  Google Scholar 

  86. Valencia, D., Guillot, T., Parmentier, V. & Freedman, R. S. Bulk composition of GJ 1214b and other sub-Neptune exoplanets. Astrophys. J. 775, 10 (2013).

    Article  ADS  Google Scholar 

  87. Madhusudhan, N., Nixon, M. C., Welbanks, L., Piette, A. A. A. & Booth, R. A. The interior and atmosphere of the habitable-zone exoplanet K2-18b. Astrophys. J. 891, L7 (2020).

    Article  ADS  Google Scholar 

  88. Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    Article  ADS  Google Scholar 

  89. Hubbard, W. B. et al. Theory of extrasolar giant planet transits. Astrophys. J. 560, 413–419 (2001).

    Article  ADS  Google Scholar 

  90. Otegi, J. F. et al. Impact of the measured parameters of exoplanets on the inferred internal structure. Astron. Astrophys. 640, A135 (2020).

    Article  Google Scholar 

  91. Lozovsky, M., Helled, R., Dorn, C. & Venturini, J. Threshold radii of volatile-rich planets. Astrophys. J. 866, 49 (2018).

    Article  ADS  Google Scholar 

  92. Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E. & Fauchez, T. The runaway greenhouse radius inflation effect. An observational diagnostic to probe water on Earth-sized planets and test the habitable zone concept. Astron. Astrophys. 628, A12 (2019).

    Article  ADS  Google Scholar 

  93. Turbet, M. et al. Revised mass-radius relationships for water-rich rocky planets more irradiated than the runaway greenhouse limit. Astron. Astrophys. 638, A41 (2020).

    Article  Google Scholar 

  94. Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).

    Article  ADS  Google Scholar 

  95. Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of Hycean worlds. Astrophys. J. 918, 1 (2021).

    Article  ADS  Google Scholar 

  96. Kosiarek, M. R. et al. Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827. Astron. J. 161, 47 (2021).

  97. Curtis, J. L. et al. When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147. Astrophys. J. 904, 140 (2020).

  98. Muirhead, P. S. et al. Characterizing the cool Kepler objects of interests. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. Astrophys. J. 750, L37 (2012).

    Article  ADS  Google Scholar 

  99. Watson, A. J., Donahue, T. M. & Walker, J. C. G. The dynamics of a rapidly escaping atmosphere: applications to the evolution of earth and Venus. Icarus 48, 150–166 (1981).

    Article  ADS  Google Scholar 

  100. Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    Article  ADS  Google Scholar 

  101. Feinstein, A. D. et al. Flare Statistics for Young Stars from a Convolutional Neural Network Analysis of TESS Data. Astron. J. 160, 219 (2020).

  102. Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005).

    Article  ADS  Google Scholar 

  103. Jackson, A. P., Davis, T. A. & Wheatley, P. J. The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Mon. Not. R. Astron. Soc. 422, 2024–2043 (2012).

    Article  ADS  Google Scholar 

  104. Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Article  ADS  Google Scholar 

  105. Güdel, M., Guinan, E. F. & Skinner, S. L. The X-ray Sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys. J. 483, 947–960 (1997).

    Article  ADS  Google Scholar 

  106. Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    Article  ADS  Google Scholar 

  107. Owen, J. E. & Jackson, A. P. Planetary evaporation by UV & X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931 (2012).

    Article  ADS  Google Scholar 

  108. Owen, J. E. & Alvarez, M. A. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816, 34 (2016).

    Article  ADS  Google Scholar 

  109. Erkaev, N. V. et al. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Mon. Not. R. Astron. Soc. 460, 1300–1309 (2016).

    Article  ADS  Google Scholar 

  110. Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from ‘hot Jupiters’. Astron. Astrophys. 472, 329–334 (2007).

    Article  ADS  Google Scholar 

  111. Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    Article  ADS  Google Scholar 

  112. Schaefer, L. & Fegley, B. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010).

    Article  ADS  Google Scholar 

  113. Lichtenberg, T. et al. Vertically resolved magma ocean-protoatmosphere evolution: H2, H2O, CO2, CH4, CO, O2, and N2 as primary absorbers. J. Geophys. Res. Planets 126, e2020JE006711 (2021).

  114. Sossi, P. A. Atmospheres in the baking. Nat. Astron. 5, 535–536 (2021).

    Article  ADS  Google Scholar 

  115. Andrault, D., Monteux, J., Le Bars, M. & Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 443, 195 (2016).

    Article  ADS  Google Scholar 

  116. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  117. Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  Google Scholar 

  118. Gao, P. & Zhang, X. Deflating super-puffs: impact of photochemical hazes on the observed mass-radius relationship of low-mass planets. Astrophys. J. 890, 93 (2020).

    Article  ADS  Google Scholar 

  119. Lavvas, P., Koskinen, T., Steinrueck, M. E., García Muñoz, A. & Showman, A. P. Photochemical hazes in sub-Neptunian atmospheres with a focus on GJ 1214b. Astrophys. J. 878, 118 (2019).

    Article  ADS  Google Scholar 

  120. Piro, A. L. Can rocky exoplanets with rings pose as sub-Neptunes? Astron. J. 156, 80 (2018).

    Article  ADS  Google Scholar 

  121. Piro, A. L. & Vissapragada, S. Exploring whether super-puffs can be explained as ringed exoplanets. Astron. J. 159, 131 (2020). ArXiv: 1911.09673.

    Article  ADS  Google Scholar 

  122. Clausen, N. & Tilgner, A. Dissipation in rocky planets for strong tidal forcing. Astron. Astrophys. 584, A60 (2015).

    Article  ADS  Google Scholar 

  123. Chandrasekhar, S. Ellipsoidal Figures of Equilibrium. The Silliman Foundation Lectures (Yale Univ. Press, 1969).

  124. Tremaine, S., Touma, J. & Namouni, F. Satellite dynamics on the Laplace surface. Astron. J. 137, 3706–3717 (2009).

    Article  ADS  Google Scholar 

  125. Schlichting, H. E. & Chang, P. Warm Saturns: on the nature of rings around extrasolar planets that reside inside the ice line. Astrophys. J. 734, 117 (2011).

    Article  ADS  Google Scholar 

  126. Astropy Collaborationet al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  127. Astropy Collaborationet al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  128. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  129. Pérez, F. & Granger, B. E. Ipython: A System for Interactive Scientific Computing, Computing in Science & Engineering, vol. 9 (2007).

  130. Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  131. Zeng, L. & Sasselov, D. A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pac. 125, 227 (2013).

    Article  ADS  Google Scholar 

  132. Marcus, R. A., Sasselov, D., Hernquist, L. & Stewart, S. T. Minimum radii of super-Earths: constraints from giant impacts. Astrophys. J. Lett. 712, L73–L76 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the open-source software that made this work possible: LDTK34, batman35, emcee36, TTVFast37, REBOUND38, WHFast39, nestle (https://github.com/kbarbary/nestle; refs. 40,41,42,43), astropy126,127, numpy128, ipython129, matplotlib130, RadVel44, george45, smint14 and GNU parallel78. This work is based on observations with the NASA/ESA HST, obtained at the Space Telescope Science Institute (STScI) operated by AURA, Inc. We received support for the analysis by NASA through grants under the HST-GO-13665 programme (PI B.B). This work relies on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This study has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for DPAC has been provided by national institutions, particularly the institutions participating in the Gaia Multilateral Agreement. Data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST) and the Spitzer Heritage Archive (SHA). This research has made use of NASA’s Astrophysics Data System and the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with NASA within the Exoplanet Exploration Program. Parts of this analysis have been run on the Lesta cluster kindly provided by the Observatoire de Genève. C.P. acknowledges financial support from the Fonds de Recherche Québécois—Nature et Technologie (FRQNT; Quebec), the Technologies for Exo-Planetary Science (TEPS) Trainee Program and the Natural Sciences and Engineering Research Council (NSERC) Vanier Scholarship. D.D. acknowledges support from the TESS Guest Investigator Program grant number 80NSSC19K1727 and NASA Exoplanet Research Program grant number 18-2XRP18_2-0136. B.B. acknowledges financial support from the NSERC of Canada and the FRQNT. I.W. is supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities under contract with NASA. C.V.M. acknowledges HST funding through grant number HST-AR-15805.001-A from STScI.

Author information

Authors and Affiliations

Authors

Contributions

C.P. and B.B. conceived the project. C.P. wrote the manuscript and carried out the reduction of the HST and Spitzer data, as well as the TTV, RV, atmospheric escape, atmospheric retrieval and planetary structure analyses, under the supervision of B.B and with the help of M.S.P. for the TTV analysis and contributions from D.K. to the upper atmosphere modelling. J.M.A. realized the photodynamical analysis and the transit search for Kepler-138 e. D.D. provided the Spitzer observations. H.A.K., A.W.H., H.I., L.M.W. and C.A.B. conducted the observations and reduction of the HIRES RVs. D.T. provided the grid of interior models. R.A. constrained the stellar age. All co-authors provided comments and suggestions on the manuscript.

Corresponding author

Correspondence to Caroline Piaulet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Three-planet photodynamical fit results.

a,b,c Same as Fig. 1a-c, for a photodynamical fit including only the three previously-known planets Kepler-138 b,c, and d. This illustrates the extent to which the timescale over which the predicted transit times of Kepler-138d are modulated (the super-period) is underestimated by the three-planet solution. This discrepancy was already hinted at by the mismatch with the Kepler transit times but revealed at high significance by the now longer baseline over which we obtained transits with HST and Spitzer, at times beyond BJD=2457000.

Extended Data Fig. 2 Folded Kepler transits of Kepler-138 b, c, and d, and search for the transit of Kepler-138 e.

The four panels show the corrected light curve of Kepler-138 (open circles) folded in a 2 day window around the expected transit epochs of Kepler-138 b, c, d, and e from the photodynamical fit (see Methods). Transit models corresponding to the median retrieved planet parameters are superimposed to the data (solid colored lines), conservatively assuming an Earth-like composition to estimate the radius of Kepler-138 e. The transits of Kepler-138 b, c, and d are detected in the Kepler light curve, but while Kepler-138 e should be larger than Kepler-138 b, its transit is not detected. We interpret this as originating from a likely non-transiting configuration of Kepler-138 e’s orbit, with an inclination of  89 consistent with the photodynamical solution, too low to occult the stellar disk from our perspective.

Extended Data Fig. 3 Search for prominent periodicities in the RV and photometric dataset.

From top to bottom, Lomb-Scargle periodogram of the RV dataset, the Kepler light curve, the activity indicator (S-index) and the window function of the RVs. The orbital periods of the four planets, the rotational period of the star and its first harmonic are shown. False-alarm probability levels of 0.1, 1 and 10% are indicated by dashed gray lines in the top two panels. Significant signals are detected at the stellar period and its first harmonic in the light curve. No significant periodicity is detected in the RV and S-index time series.

Extended Data Fig. 4 Gaussian Process fit to the Kepler photometry.

Zoom on the last 200 days of the Kepler photometric observations (black points) and the best-fitting stellar activity model using a GP (gray shading). The mean is the solid line and the variance is shown as the shaded region. The lower panel shows residuals around the best-fit model divided by the single-point scatter. Posterior constraints on the stellar rotation period from rotational brightness modulations are shown on the right. The GP model reproduces the photometric variability and provides tight constraints on the covariance structure of the stellar signal.

Extended Data Fig. 5 Median four-planet Keplerian orbital model for Kepler-138.

A trained GP model was used to account for stellar activity in the RV fit. The model corresponding to the median retrieved parameters is plotted in purple while the corresponding parameters are annotated in each panel. We add in quadrature the RV jitter term (Supplementary Table 2) with the measurement uncertainties for all RVs. a, Full HIRES time series. b, Residuals to the best fit model. c, RVs phase-folded to the ephemeris of planet b. The phase-folded model for planet b is shown (purple line), while Keplerian orbital models for all other planets have been subtracted. d,e,f, Same as c for Kepler-138 c, d, and e.

Extended Data Fig. 6 Illustration of the coupling of interior and atmosphere models.

a, Temperature-pressure and b, temperature-radius profiles computed to generate a complete planet model for a mass of 2.36 M, a H2/He mass fraction of 3%, and no water layer. Self-consistent atmosphere models are shown down to the radiative–convective boundary (dotted, black), for the irradiation of Kepler-138 d, but varying the reference radius at a pressure of 1 kbar. Interior models are displayed for the same composition but different specific entropies (solid, colors). For consistency, full-planet models with a given planet mass and composition are obtained from the combination of interior and atmosphere model that have both matching temperatures and radii at the radiative–convective boundary (bold profiles show the closest match in this example).

Extended Data Fig. 7 Composition of Kepler-138 d for the hydrogen-free scenario.

We show the joint and marginalized posterior distributions of the planet structure fit for Kepler-138 d in the case of a hydrosphere lying on top of a rock/iron core. The 1, 2 and 3σ probability contours are shown. As expected, the water mass fraction is strongly correlated with the relative amount of rock and iron. The correlation between irradiance temperature and water mass fraction is weak across the considered temperature range.

Extended Data Fig. 8 Impact of unocculted stellar spots on the Kepler transit depth measurement.

Transmission spectrum of Kepler-138 d (black points) superimposed with three scenarios for the level of stellar contamination: spot covering fractions of 0.1, 3 or 10% (colored lines, colored filled circles show bandpass-integrated values). The potential impact of unocculted stellar spots on the radius in the Kepler bandpass is small compared to its measurement uncertainty.

Extended Data Fig. 9 Composition of Kepler-138 c for the hydrogen-free scenario.

Same as Extended Data Figure 7, for Kepler-138 c.

Extended Data Fig. 10 Constraints on the atmospheric composition from transmission spectroscopy.

a, Optical-to-IR transmission spectrum of Kepler-138 d, compared with three representative forward models: a H2/He atmosphere with a solar composition, a high-metallicity cloud-free atmosphere and a cloudy hydrogen-dominated atmosphere. b, Joint posterior probability density of the cloud top pressure Pcloud and atmospheric metallicity, along with the corresponding mass fraction of metals Z assuming a solar C/O ratio. The color encodes the density of posterior samples in each bin and the contours indicate the 2 and 3σ constraints. The location in the parameter space of the three models from panel a is shown with ‘x’ markers. The constraints reflect the well-documented degeneracy between increasing mean molecular weight of the atmosphere and cloud top pressure in terms of the strength of absorption features77. The cloud-free, solar-metallicity scenario is excluded at 2.5σ. The new planet mass leads to an increased surface gravity which motivates further spectroscopic follow-up to obtain more precise constraints on the atmospheric composition.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–3.

Supplementary Dataset 1

Machine-readable table of the Keck/HIRES RVs of Kepler-138.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piaulet, C., Benneke, B., Almenara, J.M. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat Astron 7, 206–222 (2023). https://doi.org/10.1038/s41550-022-01835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01835-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing