Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing

Abstract

Growth factors can stimulate tissue regeneration, but the side effects and low effectiveness associated with suboptimal delivery systems have impeded their use in translational regenerative medicine. Physiologically, growth factor interactions with the extracellular matrix control their bioavailability and spatiotemporal cellular signalling. Growth factor signalling is also controlled at the cell surface level via binding to heparan sulfate proteoglycans, such as syndecans. Here we show that vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) that were engineered to have a syndecan-binding sequence trigger sustained low-intensity signalling (tonic signalling) and reduce the desensitization of growth factor receptors. We also show in mouse models that tonic signalling leads to superior morphogenetic activity, with syndecan-binding growth factors inducing greater bone regeneration and wound repair than wild-type growth factors, as well as reduced tumour growth (associated with PDGF-BB delivery) and vascular permeability (triggered by VEGF-A). Tonic signalling via syndecan binding may also enhance the regenerative capacity of other growth factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhancing growth factor binding to syndecans.
Fig. 2: Enhancing growth factor binding to syndecans triggers tonic signalling.
Fig. 3: Syndecan-binding growth factors have enhanced morphogenetic capacity.
Fig. 4: Syndecan-binding VEGF-A has enhanced capacity to induce EC assembly.
Fig. 5: Syndecan-binding PDGF-BB improves bone regeneration.
Fig. 6: Syndecan-binding VEGF-A promotes impaired wound healing and angiogenesis.
Fig. 7: Syndecan-binding growth factors induce fewer side effects.

Similar content being viewed by others

Data availability

All the data supporting the results in this study are available in the Article and Supplementary Information. The datasets generated and analysed during the study are available from the corresponding author on reasonable request.

References

  1. Briquez, P. S., Clegg, L. E., Martino, M. M., Gabhann, F. M. & Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 1, 15006 (2016).

    CAS  Google Scholar 

  2. Briquez, P. S., Hubbell, J. A. & Martino, M. M. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv. Wound Care 4, 479–489 (2015).

    Google Scholar 

  3. Martino, M. M., Briquez, P. S., Maruyama, K. & Hubbell, J. A. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv. Drug Deliv. Rev. 94, 41–52 (2015).

    CAS  PubMed  Google Scholar 

  4. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–888 (2014).

    CAS  PubMed  Google Scholar 

  5. Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra189 (2011).

    Google Scholar 

  6. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Baldo, B. A. Side effects of cytokines approved for therapy. Drug Safety 37, 921–943 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Marti-Carvajal, A. J. et al. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst. Rev. 10, CD008548 (2015).

    Google Scholar 

  9. Galiano, R. D. et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 164, 1935–1947 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferguson, M. W. et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet 373, 1264–1274 (2009).

    CAS  PubMed  Google Scholar 

  11. Barrientos, S., Brem, H., Stojadinovic, O. & Tomic-Canic, M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 22, 569–578 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Niu, Y., Li, Q., Ding, Y., Dong, L. & Wang, C.. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2018.06.002 (2018).

  13. Martino, M. M. et al. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol. 3, 45 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).

    CAS  PubMed  Google Scholar 

  15. Kwon, M. J., Jang, B., Yi, J. Y., Han, I. O. & Oh, E. S. Syndecans play dual roles as cell adhesion receptors and docking receptors. FEBS Lett. 586, 2207–2211 (2012).

    CAS  PubMed  Google Scholar 

  16. Afratis, N. A. et al. Syndecans – key regulators of cell signaling and biological functions. FEBS J. 284, 27–41 (2017).

    CAS  PubMed  Google Scholar 

  17. Reiland, J. & Rapraeger, A. C. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J. Cell Sci. 105, 1085–1093 (1993).

    CAS  PubMed  Google Scholar 

  18. Chen, E., Hermanson, S. & Ekker, S. C. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103, 1710–1719 (2004).

    CAS  PubMed  Google Scholar 

  19. Lee, Y. H. et al. Processing of syndecan-2 by matrix metalloproteinase-14 and effect of its cleavage on VEGF-induced tube formation of HUVECs. Biochem. J. 474, 3719–3732 (2017).

    CAS  PubMed  Google Scholar 

  20. Baeyens, N. et al. Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc. Natl Acad. Sci. USA 111, 17308–17313 (2014).

    CAS  PubMed  Google Scholar 

  21. Purushothaman, A. et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 2449–2457 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukai, N. et al. Syndecan-1: an inhibitor of arterial smooth muscle cell growth and intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 29, 1356–1362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Das, S., Majid, M. & Baker, A. B. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater. 42, 56–65 (2016).

    CAS  PubMed  Google Scholar 

  24. Choi, Y., Chung, H., Jung, H., Couchman, J. R. & Oh, E. S. Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol. 30, 93–99 (2011).

    CAS  PubMed  Google Scholar 

  25. Domogatskaya, A., Rodin, S. & Tryggvason, K. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28, 523–553 (2012).

    CAS  PubMed  Google Scholar 

  26. Miner, J. H. Laminins and their roles in mammals. Microsc. Res. Tech. 71, 349–356 (2008).

    CAS  PubMed  Google Scholar 

  27. Suzuki, N. et al. Syndecan binding sites in the laminin α1 chain G domain. Biochemistry 42, 12625–12633 (2003).

    CAS  PubMed  Google Scholar 

  28. Mochizuki, M. et al. Angiogenic activity of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch. Biochem. Biophys. 459, 249–255 (2007).

    CAS  PubMed  Google Scholar 

  29. Hozumi, K., Suzuki, N., Nielsen, P. K., Nomizu, M. & Yamada, Y. Laminin α1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin α2β1. J. Biol. Chem. 281, 32929–32940 (2006).

    CAS  PubMed  Google Scholar 

  30. Hoffman, M. P. et al. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J. Biol. Chem. 273, 28633–28641 (1998).

    CAS  PubMed  Google Scholar 

  31. Negishi, Y. et al. Preparation and characterization of laminin-derived peptide AG73-coated liposomes as a selective gene delivery tool. Biol. Pharm. Bull. 33, 1766–1769 (2010).

    CAS  PubMed  Google Scholar 

  32. Shim, A. H. et al. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc. Natl Acad. Sci. USA 107, 11307–11312 (2010).

    CAS  PubMed  Google Scholar 

  33. Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P. & Hubbell, J. A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl Acad. Sci. USA 110, 4563–4568 (2013).

    CAS  PubMed  Google Scholar 

  34. Martino, M. M. & Hubbell, J. A. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).

    CAS  PubMed  Google Scholar 

  35. Sarabipour, S. & Mac Gabhann, F. VEGF-A121a binding to Neuropilins – a concept revisited. Cell Adh. Migr. 12, 204–214 (2018).

    CAS  PubMed  Google Scholar 

  36. Goh, L. K. & Sorkin, A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 5, a017459 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem. 10, 75–81 (1999).

    CAS  PubMed  Google Scholar 

  38. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    CAS  PubMed  Google Scholar 

  39. Chen, W. et al. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proc. Natl Acad. Sci. USA 112, E3893–E3900 (2015).

    CAS  PubMed  Google Scholar 

  40. Bonvin, C., Overney, J., Shieh, A. C., Dixon, J. B. & Swartz, M. A. A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications. Biotechnol. Bioeng. 105, 982–991 (2010).

    CAS  PubMed  Google Scholar 

  41. Caplan, A. I. & Correa, D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J. Orthop. Res. 29, 1795–1803 (2011).

    CAS  PubMed  Google Scholar 

  42. Friedlaender, G. E., Lin, S., Solchaga, L. A., Snel, L. B. & Lynch, S. E. The role of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in orthopaedic bone repair and regeneration. Curr. Pharm. Des. 19, 3384–3390 (2013).

    CAS  PubMed  Google Scholar 

  43. Kaipel, M. et al. BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J. Orthop. Res. 30, 1563–1569 (2012).

    CAS  PubMed  Google Scholar 

  44. Luvizuto, E. R. et al. Effect of recombinant PDGF-BB on bone formation in the presence of β-tricalcium phosphate and bovine bone mineral matrix: a pilot study in rat calvarial defects. BMC Oral Health 16, 52 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Spicer, P. P. et al. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc. 7, 1918–1929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS  PubMed  Google Scholar 

  47. Radu, M. & Chernoff, J. An in vivo assay to test blood vessel permeability. J. Vis. Exp. 16, e50062 (2013).

    Google Scholar 

  48. Kilarski, W. W. et al. Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PLoS ONE 8, e57135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tortelli, F., Pisano, M., Briquez, P. S., Martino, M. M. & Hubbell, J. A. Fibronectin binding modulates CXCL11 activity and facilitates wound healing. PLoS ONE 8, e79610 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishihara, J. et al. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 9, 2163 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Martino, M. M. et al. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat. Commun. 7, 11051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118, 4731–4739 (2005).

    CAS  PubMed  Google Scholar 

  53. Kubota, K., Sakikawa, C., Katsumata, M., Nakamura, T. & Wakabayashi, K. Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone Miner. Res. 17, 257–265 (2002).

    CAS  PubMed  Google Scholar 

  54. Marden, L. J., Fan, R. S., Pierce, G. F., Reddi, A. H. & Hollinger, J. O. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J. Clin. Investig. 92, 2897–2905 (1993).

    CAS  PubMed  Google Scholar 

  55. Ranly, D. M. et al. Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice. J. Bone Joint Surg. 87, 2052–2064 (2005).

    PubMed  Google Scholar 

  56. Hanft, J. R. et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J. Wound Care 17, 30–32, 34–37 (2008).

    CAS  PubMed  Google Scholar 

  57. Traub, S. et al. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials 34, 5958–5968 (2013).

    CAS  PubMed  Google Scholar 

  58. Martino, M. M. et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30, 1089–1097 (2009).

    CAS  PubMed  Google Scholar 

  59. Hildebrand, T., Laib, A., Muller, R., Dequeker, J. & Ruegsegger, P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14, 1167–1174 (1999).

    CAS  PubMed  Google Scholar 

  60. Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21, 513–518 (2003).

    CAS  Google Scholar 

  61. Julier, Z., Martino, M. M., de Titta, A., Jeanbart, L. & Hubbell, J. A. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine. Sci. Rep. 5, 8569 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu, D., Fuster, M. M., Lawrence, R. & Esko, J. D. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. J. Biol. Chem. 286, 737–745 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Bioimaging and the histology platform of Ecole Polytechnique Fédérale de Lausanne and Monash University. This work was partially funded by the European Community’s Seventh Framework Programme in the project Angioscaff (grant no. NMP-LA-2008-214402) to J.A.H. and M.A.S., by the Swiss National Science Foundation (grant no. P2ELP3_1750 71) to Z.J., by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (grant no. DP3DK108215) to J.A.H. and by the National Health and Medical Research Council (grant no. APP1140229) to M.M.M. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

M.M., J.A.H. and M.M.M. designed the research. M.M., E.G., A.J.P., Z.J., P.S.B. and M.M.M. conducted the experiments and analysed the data. G.A.K. and R.M. conducted the microCT measurements and analyses. M.A.S. supervised the flow chamber and microvascular permeability experiments. M.M., E.G. and M.M.M. wrote the manuscript. J.A.H. and M.M.M. supervised the research.

Corresponding author

Correspondence to Mikaël M. Martino.

Ethics declarations

Competing interests

Monash University and Ecole Polytechnique Fédérale de Lausanne have filed for patent protection on the molecular design described herein; M.M., J.A.H. and M.M.M. are named as inventors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary figures and video captions.

Reporting Summary

Supplementary Video 1

Syndecan-binding VEGF-A induces low vascular permeability (example 1).

Supplementary Video 2

Syndecan-binding VEGF-A induces low vascular permeability (example 2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, M., Güç, E., Park, A.J. et al. Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng 4, 463–475 (2020). https://doi.org/10.1038/s41551-019-0469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0469-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research