Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of sequence-defined highly functionalized nucleic acid polymers

Abstract

The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure–activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and construction of the sequence-defined polymer library.
Fig. 2: Selection of PCSK9-binding polymers from a random HFNAP library.
Fig. 3: Evolution of an improved PCSK9-binding polymer.
Fig. 4: Characterization of IL-6-binding HFNAPs selected from a random library.

Similar content being viewed by others

References

  1. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Ellington, A. D. & Szostak, J. W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850–852 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Mattheakis, L. C., Bhatt, R. R. & Dower, W. J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl Acad. Sci. USA 91, 9022–9026 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nemoto, N., Miyamoto-Sato, E., Husimi, Y. & Yanagawa, H. In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi, J. et al. cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Res. 37, e108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brudno, Y. & Liu, D. R. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem. Biol. 16, 265–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaput, J. C., Yu, H. & Zhang, S. The emerging world of synthetic genetics. Chem. Biol. 19, 1360–1371 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Pinheiro, V. B. & Holliger, P. The XNA world: progress towards replication and evolution of synthetic genetic polymers. Curr. Opin. Chem. Biol. 16, 245–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Pinheiro, V. B. & Holliger, P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol. 32, 321–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollenstein, M. Nucleoside triphosphates—building blocks for the modification of nucleic acids. Molecules 17, 13569–13591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogers, J. M. & Suga, H. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org. Biomol. Chem. 13, 9353–9363 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor, A. I. et al. Catalysts from synthetic genetic polymers. Nature 518, 427–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunn, M. R. & Chaput, J. C. Reverse transcription of threose nucleic acid by a naturally occurring DNA polymerase. ChemBioChem 17, 1804–1808 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Vaught, J. D. et al. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141–4151 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies, D. R. et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl. Acad. Sci. USA 109, 19971–19976 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gupta, S. et al. Chemically-modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J. Biol. Chem. 289, 8706–8719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gelinas, A. D. et al. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. J. Biol. Chem. 289, 8720–8734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imaizumi, Y. et al. Efficacy of base-modification on target binding of small molecule DNA aptamers. J. Am. Chem. Soc. 135, 9412–9419 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Gawande, B. N. et al. Selection of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. USA 114, 2898–2903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolle, F., Brändle, G. M., Matzner, D. & Mayer, G. A versatile approach towards nucleobase-modified aptamers. Angew. Chem. Int. Ed. 54, 10971–10974 (2015).

    Article  CAS  Google Scholar 

  29. Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. III. RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122, 2433–2439 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Perrin, D. M., Garestier, T. & Hélène, C. Expanding the catalytic repertoire of nucleic acid catalysts: simultaneous incorporation of two modified deoxyribonucleoside triphosphates bearing ammonium and imidazolyl functionalities. Nucleosides Nucleotides 18, 377–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Perrin, D. M., Garestier, T. & Hélène, C. Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J. Am. Chem. Soc 123, 1556–1563 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lermer, L., Roupioz, Y., Ting, R. & Perrin, D. M. Toward an RNaseA mimic: a DNAzyme with imidazoles and cationic amines. J. Am. Chem. Soc. 124, 9960–9961 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hollenstein, M., Hipolito, C. J., Lam, C. H. & Perrin, D. M. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 37, 1638–1649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shoji, A., Kuwahara, M., Ozaki, H. & Sawai, H. Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129, 1456–1464 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Sidorov, A. V., Grasby, J. A. & Williams, D. M. Sequence‐specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 32, 1591–1601 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl Acad. Sci. USA 111, 1449–1454 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, L. et al. Evolution of functional six-nucleotide DNA. J. Am. Chem. Soc. 137, 6734–6737 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimoto, M., Yamashige, R., Matsunaga, K., Yokoyama, S. & Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Hili, R., Niu, J. & Liu, D. R. DNA ligase-mediated translation of DNA into densely functionalized nucleic acid polymers. J. Am. Chem. Soc. 135, 98–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Lei, Y., Kong, D. & Hili, R. A high-fidelity codon set for the T4 DNA ligase-catalyzed polymerization of modified oligonucleotides. ACS Comb. Sci. 17, 716–721 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Lambert, G., Charlton, F., Rye, K.-A. & Piper, D. E. Molecular basis of PCSK9 function. Atherosclerosis 203, 1–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366, 1108–1118 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Brudno, Y., Birnbaum, M. E., Kleiner, R. E. & Liu, D. R. An in vitro translation, selection and amplification system for peptide nucleic acids. Nat. Chem. Biol. 6, 148–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ortigão, J. F. R. et al. Antisense effect of oligodeoxynucleotides with inverted terminal internucleotidic linkages: a minimal modification protecting against nucleolytic degradation. Antisense Res. Dev. 2, 129–146 (1992).

    Article  PubMed  Google Scholar 

  47. Lo Surdo, P. et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12, 1300–1305 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Gibbs, J. P. et al. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Clin. Pharmacol. 57, 616–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Kühnast, S. et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J. Lipid Res. 55, 2103–2112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo, C., Watkins, C. P. & Hili, R. Sequence-defined scaffolding of peptides on nucleic acid polymers. J. Am. Chem. Soc. 137, 11191–11196 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DARPA Fold Fx program (N66001-14-2-4053), the NIH R01 EB022376 (formerly R01 GM065400) and R35 GM118062, and the Howard Hughes Medical Institute. Z.C. was partially supported by the Y. Kishi Graduate Prize in Chemistry and Chemical Biology sponsored by the Eisai Corporation. The authors thank J. Niu, R. Hili, J. P. Maianti, D. L. Usanov and A. Chan for helpful discussions. We thank the Center for Macromolecular Interactions in the Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School for access to the Biacore T200 SPR instrument, and M. Blome, B. Lang and K. Arnett for technical assistance with the SPR experiments. We thank the Harvard FAS Small Molecule Mass Spectrometry facility for access to ESI-MS instruments and S. A. Trauger for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and D.R.L. conceived and designed the study. Z.C., P.A.L., A.P.B. and J.C.C. performed the experiments. Z.C., P.A.L. and D.R.L. wrote the manuscript.

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

Z.C., D.R.L., and Harvard University have filed patent applications on DNA-templated polymerization.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–13, Supplementary Materials and Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lichtor, P.A., Berliner, A.P. et al. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nature Chem 10, 420–427 (2018). https://doi.org/10.1038/s41557-018-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0008-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing